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Q) what is the change of the expectation value of an observable A
caused by the perturbation εV at the leading order in its strength

ε≪ 1?



Conductivity of an observable quantity

Context: Hamiltonian quantum systems

A system described by a Hamiltonian H0 that is initially in an
equilibrium state Π0, then it is perturbed by a small static
perturbation εV .

Denoting by ρε the state of the system after the perturbation has
been turned on:

Q) (H0,Π0,εV ) −→ Reτ(Aρε)−Reτ(AΠ0)=: ε ·σA+o(ε)

here A is an extensive observable, τ( ·) is the trace per unit volume
and σA is called the conductivity of A.
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state ρε of the system after the perturbation has been turned on� .
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Springer Briefs '17] · · ·
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Alternative approaches for transport properties of interacting
many-body systems: [Fröhlich, Studer Rev. Mod. Phys. '93],
[Jak²i¢, Ogata, Pillet CMP '06], [Giuliani, Mastropietro, Porta
CMP '17] · · ·
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Assumption (H) on the unperturbed model

Ï H := L2(X )⊗CN ,
X =Rd or X = discrete d-dimensional crystal⊂Rd

Ï H0 is a periodic gapped operator on H and bounded from
below

Ï Bravais lattice of translations Γ≃Zd

[H0,Tγ]= 0 ∀γ ∈ Γ

Ï via Bloch�Floquet representation H0 ≃
∫ ⊕
Td dk H0(k),

H0(k) acts on H f := L2(C1)⊗CN , C1 :=X /Γ
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Assumption (H) on the unperturbed model

Ï H := L2(X )⊗CN ,
X =Rd or X = discrete d-dimensional crystal⊂Rd

Ï H0 is a periodic gapped operator on H and bounded from
below

Ï Π0 = Fermi projection on occupied bands below the spectral
gap is in Bτ

1
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Assumption (H) on the unperturbed model

Ï H := L2(X )⊗CN ,
X =Rd or X = discrete d-dimensional crystal⊂Rd

Ï H0 is a periodic gapped operator on H and bounded from
below, such that H0 satis�es technical but mild hypotheses

Ï
H0 :R

d →L (Df,H f) , k 7→H0(k)

is a smooth equivariant map taking values in the self-adjoint
operators with dense domain Df ⊂H f. L (Df,H f) is the space
of bounded operators from Df, equipped with the graph norm
of H0(0), to H f
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The S-current
Let S = IdL2(X )⊗ s be a selfadjoint operator

Ï The conventional S-current

JSconv,i :=
1

2
(iS [H0,Xi ]+ i[H0,Xi ]S)

Ï The proper S-current

JSprop,i := i[H0,SXi ]

Remark

Ï If [H0,S ]= 0 then JSconv,i ≡ JSprop,i

Ï s = Id −→ charge current (QHE)

Ï s = sz =σz/2−→ spin current (QSHE). Spin conservation can
be violated (it happens e. g. in the Kane�Mele model when
λRashba ̸= 0)



The S-current
Let S = IdL2(X )⊗ s be a selfadjoint operator

Ï The conventional S-current

JSconv,i :=
1

2
(iS [H0,Xi ]+ i[H0,Xi ]S)

Ï The proper S-current

JSprop,i := i[H0,SXi ]

Remark

Ï If [H0,S ]= 0 then JSconv,i ≡ JSprop,i

Ï s = Id −→ charge current (QHE)

Ï s = sz =σz/2−→ spin current (QSHE). Spin conservation can
be violated (it happens e. g. in the Kane�Mele model when
λRashba ̸= 0)



The S-current
Let S = IdL2(X )⊗ s be a selfadjoint operator

Ï The conventional S-current

JSconv,i :=
1

2
(iS [H0,Xi ]+ i[H0,Xi ]S)

Ï The proper S-current

JSprop,i := i[H0,SXi ]

Remark

Ï If [H0,S ]= 0 then JSconv,i ≡ JSprop,i

Ï s = Id −→ charge current (QHE)

Ï s = sz =σz/2−→ spin current (QSHE). Spin conservation can
be violated (it happens e. g. in the Kane�Mele model when
λRashba ̸= 0)



The S-current
Let S = IdL2(X )⊗ s be a selfadjoint operator

Ï The conventional S-current

JSconv,i :=
1

2
(iS [H0,Xi ]+ i[H0,Xi ]S)

Ï The proper S-current

JSprop,i := i[H0,SXi ]

Remark

Ï If [H0,S ]= 0 then JSconv,i ≡ JSprop,i

Ï s = Id −→ charge current (QHE)

Ï s = sz =σz/2−→ spin current (QSHE). Spin conservation can
be violated (it happens e. g. in the Kane�Mele model when
λRashba ̸= 0)



The S-current
Let S = IdL2(X )⊗ s be a selfadjoint operator

Ï The conventional S-current

JSconv,i :=
1

2
(iS [H0,Xi ]+ i[H0,Xi ]S)

Ï The proper S-current

JSprop,i := i[H0,SXi ]

Remark

Ï If [H0,S ]= 0 then JSconv,i ≡ JSprop,i

Ï s = Id −→ charge current (QHE)

Ï s = sz =σz/2−→ spin current (QSHE). Spin conservation can
be violated (it happens e. g. in the Kane�Mele model when
λRashba ̸= 0)



JSconv versus JSprop

Consider s = sz

Ï JSconv adopted e. g. in [Schulz-Baldes CMP '13]:
JSconv is periodic/covariant whenever H0 is periodic/covariant
but obviously it is not expressed as a full commutator with H0

Ï JSprop proposed by [Shi, Zhang, Xiao, Niu PRL '06] and e. g.

adopted in [M., Panati, Tauber AHP '19]:
JSprop is not periodic/covariant whenever H0 is
periodic/covariant but clearly it is a full commutator with H0
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First attempt: use Kubo's formula for spin transport

First one is tempted to use Kubo's formula

σKubo
A := lim

η→0+
σ̃η,exp = lim

η→0+
i
∫

0

−∞
dt eηtτ(AeitH0 [Xj ,Π0]e

−itH0),

whose limit existence relies on two key properties of A: to be
periodic (⇒ cyclicity of τ( ·)) and to be a full commutator with H0

(⇒ integration by parts).

But each of JS
conv/prop

has not both of these properties in the

general case [H0,S ] ̸= 0 ⇒ Kubo's formula becomes cumbersome
and intractable for the spin transport.
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A new paradigm for quantum transport theory: NEASS

We use a new paradigm for quantum transport theory, specially in
linear response theory: construction of non-equilibrium
almost-stationary state (NEASS) Πε such that for every m≥ 1

sup
η∈[εm ,ε

1
m ]

∣∣τ(Aρ(t))−τ(AΠε)∣∣≤Cε2
(
1+ td+1

)
, ∀t ≥ 0,

for �suitable� observable A.

This inequality is proved for interacting models on lattices
[Henheik, Teufel arXiv '20, Teufel CMP '19, Monaco, Teufel RMP
'19], while for one-body models in the continuum it is work in
preparation with Teufel.
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Construction of the NEASS
Stationary perturbed model

Hε :=H0−εXj

Proposition

Under Assumption (H), there exists a unique NEASS such that

Πε = e−iεS Π0eiεS =Π0+εΠ1+ε2Πεr and [Hε,Πε]=O(ε2)

with S := iL −1
H0

(XOD
j ) and Π1 =L −1

H0
([Xj ,Π0])

where L −1
H0

( ·) is the inverse Liouvillian, i. e. [H0,L −1
H0

(A)]=A for

any A=AOD

Remark
Thanks to the gap condition, for any A=AOD

L −1
H0

(A) := i

2π

∮
C

dz (H0−zId)−1 [A,Π0](H0−zId)−1
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The conductivity of A by using the NEASS

Assuming the validity of the NEASS approach and inserting the
expansion of Πε
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The conductivity of A by using the NEASS

Assuming the validity of the NEASS approach and inserting the
expansion of Πε

ε ·σA+o(ε) :=Reτ(Aρε)−Reτ(AΠ0)

=Reτ(Aρε)−Reτ(AΠε)+Reτ(AΠε)−Reτ(AΠ0)

SC= εReτ(AΠ1)+ε2Reτ(AΠεr )+O(ε2)

⇝

σS
conv/prop,ij :=σJS

conv/prop,i
=Reτ(JSconv/prop,iΠ1),

once it is proved that
∣∣τ(AΠεr )∣∣≤C , for C > 0 independent of ε



S-conductivity when [H0,S ] ̸= 0

Theorem[G. M., G. Panati, S. Teufel]
Let Hε :=H0−εXj with H0 satisfying Assumption (H) and Π1 given
by the previous Proposition, then

σS
prop,ij =σS

conv,ij +σS
rot,ij,

where

σS
conv,ij=Reτ(iΠ0

[
[Xi ,Π0]S , [Xj ,Π0]

]
)

+Reτ(i[H0,XD
i ]SODΠ1+ iXOD

i [S ,H0]Π1)

and
σS

rot,ij :=Reτ(iXi [H0,S ]Π1).

Sketch of the proof
By Leibniz's rule JSprop,i := i[H0,Xi ]S + iXi [H0,S ] and

τ(i[H0,S ]Π1)= 0. Then, use the de�nition of Π1 =L −1
H0

([Xj ,Π0]).
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About the S-conductivity when [H0,S ] ̸= 0

Any formula for spin transport coe�cients should satisfy the
so-called Unit Cell Consistency, namely the (natural) requirement
that any prediction on macroscopic transport must be independent
of the choice of the fundamental cell.
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Any formula for spin transport coe�cients should satisfy the
so-called Unit Cell Consistency, namely the (natural) requirement
that any prediction on macroscopic transport must be independent
of the choice of the fundamental cell.

For every L ∈ 2N+1, we denote by

CL :=
{
x ∈X : x =

d∑
j=1

αj aj with |αj | ≤ L/2∀ j ∈ {1, . . . ,d }

}

where {a1, . . . ,ad } is a basis for the lattice Γ and χL :=χCL .

τ(A) := lim
L→∞

L∈2N+1

1

|CL|
Tr(χLAχL), |CL| = Ld |C1| .
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Any formula for spin transport coe�cients should satisfy the
so-called Unit Cell Consistency, namely the (natural) requirement
that any prediction on macroscopic transport must be independent
of the choice of the fundamental cell.

For every L ∈ 2N+1, we denote by

C̃L :=
{
x ∈X : x =

d∑
j=1

αj ãj with |αj | ≤ L/2∀ j ∈ {1, . . . ,d }

}

where { ã1, . . . , ãd } is another basis for the lattice Γ and χ̃L :=χC̃L
.

τ̃(A) := lim
L→∞

L∈2N+1

1∣∣C̃L

∣∣ Tr(χ̃LAχ̃L),
∣∣C̃L

∣∣= Ld
∣∣C̃1

∣∣ .



Unit fundamental cells

Examples for the honeycomb structure X :

a1a2

d

d3

a3

a2

d

d1

a3

a1

d

d2



About the S-conductivity when [H0,S ] ̸= 0

Lemma
Let C1 and C̃1 be two unit cells. Then there exist a �nite subset
I ⊂ Γ and a family of subsets {Pγ }

γ∈I ⊂X such that

C1 =
⊔
γ∈I

TγPγ and C̃1 =
⊔
γ∈I

Pγ.

Corollary
Let A be periodic and trace class on compact sets. Then

Ï τ(A)= τ̃(A).

Ï In addition, if Tr(χPγ
AχPγ

)= 0 for all γ ∈ I , then
τ(XiA)= τ̃(XiA).
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About the S-conductivity when [H0,S ] ̸= 0

By virtue of the previous Corollary,

if Tr(χPγ
i[H0,S ]Π1χPγ

)= 0 ∀γ ∈ I

(e. g. if the model satis�es a suitable discrete rotational symmetry,
as in the case of the Kane�Mele model),

then both σS
conv,ij and σ

S
prop,ij satisfy the Unit Cell Consistency

and, in particular in the discrete models

σS
conv,ij ≡σS

prop,ij .
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Purely linear response of the quantum Hall current to
space-adiabatic perturbations

Main goal: Validity of the Kubo formula beyond linear response, i. e.

τ(Jρε)= εσHall +O(ε∞),

where J := i[H0,X ] is the charge current operator, ρε denotes the
state of the system after the perturbation has been turned on, and

σHall := iτ
(
Π0

[
[Π0,X ], [Π0,Y ]

]) ∈ 1

2π
Z.

Existing proofs of this statement, be it in the continuum [Klein,
Seiler CMP '90] or discrete [Bachmann et al. AHP '21] setting for
many-body electron gases, base on the physical magnetic �ux

insertion argument proposed by Laughlin [Laughlin PRB '81].
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A new paradigm for quantum transport theory: NEASS

We use a new paradigm for quantum transport theory, specially in
linear response theory: construction of non-equilibrium
almost-stationary state (NEASS) Πεn such that for every n,m ∈N

sup
η∈[εm ,ε

1
m ]

∣∣τ(Aρ(t))−τ(AΠεn)∣∣≤Cεn+1
(
1+ td+1

)
, ∀t ≥ 0 (♯)

for �suitable� observable A.

This inequality is proved for interacting models on lattices
[Henheik, Teufel arXiv '20, Teufel CMP '19, Monaco, Teufel RMP
'19], while for one-body models in the continuum it is work in
preparation with Teufel.
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Construction of the NEASS at every order in ε

Stationary perturbed model

Hε :=H0−εY

Theorem[G. M., D. Monaco]

Under Assumption (H), then for any n ∈N there exists a unique
NEASS such that

Πεn := eiεS ε
n Π0 e−iεS ε

n =
n∑
j=0

εjΠj +εn+1Πreminder(ε)

where S ε
n :=

n∑
j=1

εj−1Aj , and [Hε,Πεn]= εn+1[Rε
n,Πεn].
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Purely linear response of the quantum Hall current to
space-adiabatic perturbations

Theorem[G. M., D. Monaco]

Consider the Hamiltonian Hε =H0−εY , where H0 satis�es
Assumption (H). Then for every n ∈N we have that

τ(JΠεn)= εσHall +O(εn+1),

where Πεn is as in the statement of the previous Theorem and

σHall := iτ(Π0 [[Π0,X ], [Π0,Y ]]).

Remark
Thus, up to prove the validity of the NEASS approximation for the
state of the system, after the perturbation has been switched on, in
the sense of inequality (♯), the main goal is obtained.
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Sketch of the proof
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By using the cyclicity of τ( ·) and (Πεn)
2 =Πεn

τ([H0,X ]Πεn)= τ(Πεn[Hε,X ]Πεn)
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Purely linear response of the quantum Hall current to
space-adiabatic perturbations

Sketch of the proof

τ([H0,X ]Πεn)= τ(Πεn[Hε,X ]Πεn)

= τ([ΠεnHεΠεn,ΠεnXΠ
ε
n])+εn+1τ

(
Πεn

[
[Πεn,Rε

n], [X ,Πεn]
]
Πεn

)
= τ([ΠεnH0Π

ε
n,ΠεnXΠ

ε
n])−ετ([ΠεnYΠεn,ΠεnXΠ

ε
n])

+εn+1τ(
Πεn

[
[Πεn,Rε

n], [X ,Πεn]
]
Πεn

)
We conclude noticing that τ([ΠεnH0Π

ε
n,ΠεnXΠ

ε
n])= 0 by cyclicity of

the trace, and the Chern�Simons-like formula de�ning
PU :=UPU−1 τ([PUXPU ,PUYPU ])= τ([PXP ,PYP]) for U ,P
periodic and regular enough.



Thank you for your attention!
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