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Q) what is the change of the expectation value of an observable A
caused by the perturbation €\ at the leading order in its strength
ex1?



Conductivity of an observable quantity

Context: Hamiltonian quantum systems

A system described by a Hamiltonian Hp that is initially in an
equilibrium state Iy, then it is perturbed by a small static
perturbation eV.

Denoting by p, the state of the system after the perturbation has
been turned on:
Q) (Ho,Tp,eV) — Ret(Ape)—Ret(Allg)=:e-0a+0(¢)

here A is an extensive observable, 7(-) is the trace per unit volume
and o4 is called the conductivity of A.
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A model for the switching process

Let
Hé(nt) := Ho—ef(nt)X;, ntel,

where [-1,0] </ <R is compact interval, e <1 and < 1.
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Let p(t) the solution of the following Cauchy problem
{ ip(t) = [HE(nt), p(1)

p(to) =[lgVty < —1/1].

Then, p(0) or p(t) for any t =0 is “the natural candidate for the
state p. of the system after the perturbation has been turned on”.
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The usual paradigm for linear response

By the fundamental theorem of calculus, one obtains that
pe:=p(0)

0 5 s
Pe = Iy — igf dt f(nt)eltHo[V’Ho]efltHo + 82 Rs,n,f’
—0o0
and thus
1(Ape) = T(Allg) + &5 +e21(AR®™T)

with 0
& =i f dt F(nt)T(Ae™Ho[V/, TTgle o).
—00

Now, choosing f =exp and taking the adiabatic limit 7 — 07, one
gets Kubo's formula for the linear response coefficient
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Kubo's formula

7(Ape) = T(Allp) +£-5"" +£°1(ARS™)
with .
"t = if dt f(nt)T(AeitHO [T, \/]e—itHo)_

Now, choosing f =exp and taking the adiabatic limit n — 0%, one
gets Kubo's formula for the linear response coefficient

0
UE‘“bO = nlir& geP = nlin&if dte’ﬁT(AeiﬂH0 [, V]e_itHO).
The existence and computation of the limit lim; .+ 77 for
A= J?:=i[H®(t), X;] are proved e. g. for one-particle Hamiltonian in
[Bellissard, van Elst, Schulz-Baldes JMP '98], [Aizenman, Graf JPA
'98], [Bouclet, Germinet, Klein, Schenker JFA '05], [De Nittis, Lein
Springer Briefs '17] ---



Kubo's formula

7(Ape) = T(Allp) +£-5"" +£°1(ARS™)
with .
"t = if dt f(nt)T(AeitHO [T, \/]e—itHo)_

Now, choosing f =exp and taking the adiabatic limit n — 0%, one
gets Kubo's formula for the linear response coefficient

0 . .

oRubo .= Iirg geP = Iing if dtetr(Aelto[y, V]e itHo),
n—0* n—0" J-oo

Alternative approaches for transport properties of interacting

many-body systems: [Frohlich, Studer Rev. Mod. Phys. '93],

[Jaksi¢, Ogata, Pillet CMP ’06], [Giuliani, Mastropietro, Porta

CMP '17] ---
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Assumption (H) on the unperturbed model
> #:=1%(%)ecCV,
% =RY or & =discrete d-dimensional crystal c RY

> Hp is a periodic gapped operator on # and bounded from
below

> Bravais lattice of translations T = 79
[Ho, Ty]=0 Vyerl

> via Bloch-Floquet representation Ho = [ dk Ho(k),
Ho(k) acts on #;:= L?(6;)eCN, € =2 /T
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> #:=12(Z)ecCN,
X =RY or & =discrete d-dimensional crystal c RY

> Hp is a periodic gapped operator on # and bounded from
below

» Tl = Fermi projection on occupied bands below the spectral
gap is in %]



A model for quantum transport

Assumption (H) on the unperturbed model
> = 12(%)ecCN,
2 =R9 or & = discrete d-dimensional crystal c RY

> Hp is a periodic gapped operator on /# and bounded from

below, such that Hy satisfies technical but mild hypotheses
>

HO:Rd_)g(@fﬂyff)’ k'_’HO(k)

is a smooth equivariant map taking values in the self-adjoint
operators with dense domain @¢c #. £(Py, /%) is the space
of bounded operators from %, equipped with the graph norm
of Hy(0), to 74
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A model for quantum transport

Assumption (H) on the unperturbed model
> #:=1%(%)ecCN,
2 =R9 or & = discrete d-dimensional crystal c RY

> Hpy is a periodic gapped operator on / and bounded from
below, such that Hy satisfies technical but mild hypotheses

Remark The above assumptions are satisfied
> in most tight-binding models having spectral gap (discrete

case)

> by gapped, periodic Schrédinger operators
1, . 5
Hy = 5(—1V—A(X)) +V(x)

under standard hypotheses of relative boundedness of the
potentials w.r.t. —A (continuum case)
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» s=1Id — charge current (QHE)



The S-current
Let S=1d,2(5)®s be a selfadjoint operator

» The conventional S-current

JS

conv,i

- %(iS[HO,X,-] +i[Ho, X/]S)

» The proper S-current

JS = i[Ho,SX,']

prop,i -
Remark
> If [Ho,S] =0 then J3 .= Jpsmp,i

» s=1Id — charge current (QHE)

> s=5,=0,/2— spin current (QSHE). Spin conservation can
be violated (it happens e. g. in the Kane-Mele model when
ARashba 7 O)
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S S
Jeony versus Jgoo

Consider s=5s,

> JS

conv

adopted e. g. in [Schulz-Baldes CMP "13]:
J2. is periodic/covariant whenever Hy is periodic/covariant
but obviously it is not expressed as a full commutator with Hy

> Jffmp proposed by [Shi, Zhang, Xiao, Niu PRL '06] and e. g.
adopted in [M., Panati, Tauber AHP "19]:
Jf?mp is not periodic/covariant whenever Hy is
periodic/covariant but clearly it is a full commutator with Hp
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First attempt: use Kubo's formula for spin transport

First one is tempted to use Kubo's formula

0 . .

o0 = |im 1P = |im if dte”tr(AeltHo[Xj,Ho]eﬂtH"),
n—0* n—0" J-oco

whose limit existence relies on two key properties of A: to be

periodic (= cyclicity of 7(+)) and to be a full commutator with Hy

(= integration by parts).

But each of J°
conv/prop

general case [Hp, S| #0 = Kubo's formula becomes cumbersome
and intractable for the spin transport.

has not both of these properties in the



A new paradigm for quantum transport theory: NEASS

We use a new paradigm for quantum transport theory, specially in
linear response theory: construction of non-equilibrium
almost-stationary state (NEASS) T1¢ such that for every m=>1

sup |T(Ap(t))—T(AH£)|SC€2(1+td+1), Vit=0,

nelem, e

for “suitable” observable A.



A new paradigm for quantum transport theory: NEASS

We use a new paradigm for quantum transport theory, specially in
linear response theory: construction of non-equilibrium
almost-stationary state (NEASS) T1¢ such that for every m=>1

sup |T(Ap(t))—T(AH£)|SC£2(1+td+1), Vit=0,

ne[e’",e%]
for “suitable” observable A.

This inequality is proved for interacting models on lattices
[Henheik, Teufel arXiv 20, Teufel CMP 19, Monaco, Teufel RMP
'19], while for one-body models in the continuum it is work in
preparation with Teufel.
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Construction of the NEASS

Stationary perturbed model
H® := Hy—eX;
Proposition
Under Assumption (H), there exists a unique NEASS such that
¢ = e 7 Mpe®” =My + eIl + €211 and  [HE,11f] = 6(&?)
with &%= L%,f,l(X-OD) and Il = f,fll([X-,Ho])

where fflf,j() is the inverse Liouvillian, i.e. [Hy, & ( )] = A for

any A= A9D

Remark
Thanks to the gap condition, for any A= AP

L7(A) = 3( dz (Ho — z1d)™ [A, TTo] (Hp — 71d)
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The conductivity of A by using the NEASS

Assuming the validity of the NEASS approach and inserting the
expansion of I1¢

e-0a+0(€):=Ret(Aps) — Ret(Allp)
=Re1(Ap:) —Ret(AIl®) + ReT(AIl®) — Re7(Allp)
S:Cé:ReT(Al'[l) + &% Re(AIIE) + O (€2)



The conductivity of A by using the NEASS

Assuming the validity of the NEASS approach and inserting the
expansion of II¢

e-op+0(e):=Ret(Aps)—Ret(Allp)
=Re1(Ap.) — ReT(AIl?) + Re 7(AIl?) — Re 7(Allp)
L eReT(Ally) + €2 ReT(AILE) + G(£2)

S . -R S nl
Uconv/prop,ij =0 Csonv/pmpj eT(Jconv/prop,i 1 )’

once it is proved that |7(AIIf)| < C, for C >0 independent of ¢



S-conductivity when [Hp, S| #0

Theorem[G. M., G. Panati, S. Teufel]
Let H® := Hy —eX; with Hy satisfying Assumption (H) and TI; given
by the previous Proposition, then
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S-conductivity when [Hp, S| #0

Theorem[G. M., G. Panati, S. Teufel]
Let H® := Hy —eX; with Hy satisfying Assumption (H) and TI; given
by the previous Proposition, then

S S S
prop,ij = Uconv,ij + Urot,ij’
where
0 Gonv= Re(iTTo [X;, TT0] S, [X;, TIo] )
+Re(i[Ho, X 1SOPTIy +1XPP[S, HolTT1)
and

= Re1(iX;[Ho, S]II1).

rot ij -

Sketch of the proof
By Leibniz's rule Jpsmpl =i[Ho, Xi]S +iXi[Hp, S] and

7(i[Ho, S|I11) = 0. Then, use the definition of I1; = H;([XJ-,HO]).
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so-called Unit Cell Consistency, namely the (natural) requirement
that any prediction on macroscopic transport must be independent
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d
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About the S-conductivity when [Hp, S]#0

Any formula for spin transport coefficients should satisfy the
so-called Unit Cell Consistency, namely the (natural) requirement
that any prediction on macroscopic transport must be independent
of the choice of the fundamental cell.

For every L € 2N+ 1, we denote by

d
%L:z{xe%:x:ZaJﬁj with IaJ-ISL/2Vj€{1,...,d}}
j=1

where {31,...,34} is another basis for the lattice I" and }, := x4, .

L—o0

: 1 o ~ ~
T(A):= lim ?Tr(XLAXL), |6L| = L9 |€1].
Le2N+1



Unit fundamental cells

Examples for the honeycomb structure &':
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Corollary
Let A be periodic and trace class on compact sets. Then

> 7(A) = 7(A).



About the S-conductivity when [Hp, S]#0

Lemma
Let 6; and 6; be two unit cells. Then there exist a finite subset
I T and a family of subsets {Py}ye/ c % such that

¢ =|]TyP, and € =|]P.

yel yel
Corollary
Let A be periodic and trace class on compact sets. Then
> 7(A)=T7(A).

> In addition, if Tr(yp, Ayxp,) =0 for all ye/, then
T(X,‘A) Zf(X,'A).
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By virtue of the previous Corollary,
if Tr()(pyi[Ho,S]Hl )(py) =0 V)/E /

(e. g. if the model satisfies a suitable discrete rotational symmetry,
as in the case of the Kane—Mele model),
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About the S-conductivity when [Hp, S]#0

By virtue of the previous Corollary,

if Tr()(pyi[Ho,S]Hl )(py) =0 V)/E /
(e. g. if the model satisfies a suitable discrete rotational symmetry,
as in the case of the Kane—Mele model),

then both chonv,ij and agmp,ij satisfy the Unit Cell Consistency

and, in particular in the discrete models

S S

Uconv,ij = Uprop,ij :



Purely linear response of the quantum Hall current to
space-adiabatic perturbations
Main goal: Validity of the Kubo formula beyond linear response, i. e.
7(Jpe) = €0y + O (™),

where J:=1i[Hp, X] is the charge current operator, p. denotes the
state of the system after the perturbation has been turned on, and

OHall -= iT(HO[[HO,X],[HO, Y”) € % Z.



Purely linear response of the quantum Hall current to
space-adiabatic perturbations
Main goal: Validity of the Kubo formula beyond linear response, i. e.
7(Jpe) = €0y + O (™),

where J:=1i[Hp, X] is the charge current operator, p. denotes the
state of the system after the perturbation has been turned on, and

OHall -= iT(HO[[HO,X],[HO, Y”) € % Z.

Existing proofs of this statement, be it in the continuum [Klein,
Seiler CMP '90] or discrete [Bachmann et al. AHP "21] setting for
many-body electron gases, base on the physical magnetic flux
insertion argument proposed by Laughlin [Laughlin PRB "81].



A new paradigm for quantum transport theory: NEASS

We use a new paradigm for quantum transport theory, specially in
linear response theory: construction of non-equilibrium
almost-stationary state (NEASS) I1% such that for every n,meN

sup [7(Ap(1)) - T(ATIE)| < Cem 1+171), we=0  (p)

nelem, 7]

for “suitable’ observable A.



A new paradigm for quantum transport theory: NEASS

We use a new paradigm for quantum transport theory, specially in
linear response theory: construction of non-equilibrium
almost-stationary state (NEASS) I1% such that for every n,meN

sup [7(Ap(1)) - T(ATIE)| < Cem 1+171), we=0  (p)
nelem, em]
for “suitable’ observable A.
This inequality is proved for interacting models on lattices
[Henheik, Teufel arXiv 20, Teufel CMP 19, Monaco, Teufel RMP

'19], while for one-body models in the continuum it is work in
preparation with Teufel.



Construction of the NEASS at every order in €

Stationary perturbed model

HE:=Hy—¢Y



Construction of the NEASS at every order in €

Stationary perturbed model
HE:=Hy—¢eY
Theorem[G. M., D. Monaco]

Under Assumption (H), then for any neN there exists a unique
NEASS such that

n
e ._ _ieFt —ieFE _ j n+1
IT,:=e*7"IIge n = ZEJHJ"FE Hreminder(g)
Jj=0

n

n .
where  75:=Y &1A;, and  [HE 1] =" RE TTE).
=1



Purely linear response of the quantum Hall current to
space-adiabatic perturbations

Theorem|[G. M., D. Monaco]

Consider the Hamiltonian H® = Hy — €Y', where Hy satisfies
Assumption (H). Then for every neN we have that

T(JTE) = oy + O (™),
where TI{ is as in the statement of the previous Theorem and

oHanl := i7(I [[TTo, X], [T, Y]]).



Purely linear response of the quantum Hall current to
space-adiabatic perturbations

Theorem|[G. M., D. Monaco]

Consider the Hamiltonian H® = Hy — €Y', where Hy satisfies
Assumption (H). Then for every neN we have that

T(JTE) = oy + O (™),
where TI{ is as in the statement of the previous Theorem and
Opan := i7(Io [[To, X], [Io, Y]).

Remark

Thus, up to prove the validity of the NEASS approximation for the
state of the system, after the perturbation has been switched on, in
the sense of inequality (f), the main goal is obtained.



Purely linear response of the quantum Hall current to
space-adiabatic perturbations

Sketch of the proof

Let's recall JIIE = i[Ho, X]ITE



Purely linear response of the quantum Hall current to
space-adiabatic perturbations

Sketch of the proof
By using the cyclicity of 7(-) and (I11¢)% = TI¢

7 ([Ho, X]IT;) = 7 (I [H*, X]TT7)



Purely linear response of the quantum Hall current to
space-adiabatic perturbations

Sketch of the proof
In view of [HE,TI¢] = ™1 [RE, TIE]
7 ([Ho, X]IT7,) = 7 (I3 [H®, X]IT7,)
= 7 (I HETIE, TIEXTIS]) + 7L (115 [ 11, RE], [X, 5] 1)

n n''n



Purely linear response of the quantum Hall current to
space-adiabatic perturbations

Sketch of the proof
By using H® :=Hy—¢Y
7 ([Ho, X]IT) = 7 (T [H*, X]TT7)
= 7 ([I§ HETTE, TIE XTIE]) + ™+ 7 (6 [ (116, RE], [X, 16 | I15,)
=1 ([[15, HpI1E, T1E, XTI1E ) — e T ([T, YTIE, TTE, X TIE )
e (115115, RE, X, 15 1)



Purely linear response of the quantum Hall current to
space-adiabatic perturbations

Sketch of the proof

7 ([Ho, X]IT7,) = 7 (I3 [H*, X]IT,)
= 7 ([I§ HETTE, TIE XTIE]) + ™+ 7 (6 [ (116, RE], [X, 16 | 115,
= 7 ([IT HoITE, TTE X TIE ) — e 7 ([I15, Y TIE, 1€ XTI
+eM 7 (14 116, RE], [X, 5] |15
We conclude noticing that 7 ([IT5HoI15, 15 XTI4]) = 0 by cyclicity of

the trace, and the Chern—-Simons-like formula defining

Py := UPU™! 1([PyXPy, Py YPy)) = t([PXP, PYP]) for U, P
periodic and regular enough.



Thank you for your attention!
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