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For all of the following problems let h, h1, h2 be Hilbert spaces.

Problem 1: Slater Determinants

Let h = L2(Rd). Let (fj)
N
j=1 an orthonormal system in h. Consider the fermionic case.

a. Show that ψ := a∗(f1)a
∗(f2) · · · a∗(fN)Ω ∈ F−(h) can be identified with the function

ψ(x1, . . . , xN) = (N !)−1/2 det
(
(fi(xj))

N
i,j=1

)
, x1, . . . , xN ∈ Rd .

b. Show that the one-particle density matrix γψ of a Slater determinant ψ =
∧N
j=1 fj is

a rank-N projection on the Hilbert space h, specifically in Dirac notation

γ =
N∑
j=1

|fj⟩⟨fj| .

Problem 2: Unitary Groups and their Generator

Let A = A∗ a self-adjoint operator on h. Show that U(t) := Γ(e−itA), on fermionic as
on bosonic Fock space F±(h), satisfies

U(t)U(s) = U(t+ s)

and that, for vectors φ ∈ F±(h) such that the limit exists, we have

i
d

dt
U(t)φ

∣∣∣∣
t=0

:= lim
ε→0

i
U(ε)− 1

ε
φ = dΓ(A)φ .

Problem 3: Canonical Commutation and Anticommutation Relations CCR/CAR

In the following consider ψ, φ as sequences in bosonic/fermionic Fock space with only a
finite number of non-vanishing elements. Let f, g ∈ h.

a. Show that, in bosonic as in fermionic Fock space, we have

⟨ψ, a(f)φ⟩F± = ⟨a∗(f)ψ, φ⟩F± .

Page 1 of 5
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b. Let [A,B] := AB − BA be the commutator of two operators A,B. Show that for
ψ ∈ F+ we have

[a(f), a(g)]ψ = 0 , [a∗(f), a∗(g)]ψ = 0 , [a(f), a∗(g)]ψ = ⟨f, g⟩hψ .

Show that on fermionic Fock space F− the analogous relations hold with the com-
mutator replaced by the anticommutator {A,B} := AB +BA.

Problem 4: Pair Interaction

Let Td be the d-dimensional torus of side lengths 2π.

a. Show that on L2(TdN), understood as a subspace of F±(L
2(Td)), in terms of the

operator valued distributions, we have

⟨ψ,
∑
i<j

V (xi − xj)ψ⟩ = ⟨ψ, 1
2

∫
V (x− y)a∗xa

∗
yayaxdxdy ψ⟩ . (1)

b. The plane waves
ek(x) := (2π)−d/2eik·x , k ∈ Zd ,

form an orthonormal basis of L2(Td). (Verify this claim if you are unsure!)

The identity operator can then be written as the infinite-rank projection

id =
∑
k∈Zd

|ek⟩⟨ek| .

(Don’t worry about convergence of the sums over Zd.) The Fourier transform of the
operator-valued distributions can then be obtained as

a∗x = a∗(δ(· − x)) = a∗(
∑
k∈Zd

ekek(x)) =
∑
k∈Zd

(2π)−d/2e−ik·xa∗(ek)

=:
∑
k∈Zd

(2π)−d/2e−ik·xa∗k .
(2)

(In the last step we wrote a∗k := a∗(ek). Despite the abuse of notation, usually no
confusion of a∗k with the operator-valued distributions a∗x should arise.) One says
that a∗k creates a particle in momentum-mode k.

Use (2) to express the second-quantized interaction (i. e., the operator on the right
hand side of (1)) in terms of the momentum-mode operators a∗k, ak and the Fourier
transform V̂ of the interaction potential V . Your final result should contain three
sums over momenta.
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Problem 5: Example of Wick’s Theorem

Let ψ be a quasifree state in bosonic or fermionic Fock space F±(h). Let f1, f2, f3, f4 ∈ h
be pairwise orthonormal. By explicit computation, check that the expectation value

⟨ψ, a∗(f1)a∗(f2)a(f3)a(f4)ψ⟩

is given by the sum over pairings as claimed in Wick’s theorem.

Express the result in terms of the one-particle reduced density operator γ and the pairing
density operator α.

Problem 6: Bogoliubov Transformation

Consider a Bogoliubov map, given in the notation of Solovej’s notes as

V =

(
U J∗V J∗

V JUJ∗

)
.

a. Show that, for UV being the implementation of the Bogoliubov map V as a unitary
on Fock space, we have

UVa(f)U∗
V = a(Uf) + a∗(J∗V f) .

b. Show that the inverse transformation V−1 is given by(
U∗ −V ∗

−JV ∗J JU∗J∗

)
for bosons;

(
U∗ V ∗

JV ∗J JU∗J∗

)
for fermions.

c. Show that the number of particles in the “quasiparticle vacuum” Ω′ := UVΩ is

⟨Ω′,NΩ′⟩ = trV ∗V .

Compare this to the Shale–Stinespring condition.

Problem 7: Perturbation Theory

Consider
H := F−(L

2(Td))⊗F+(L
2(Td)) .

We denote the creation and annihilation operators on the fermionic Fock space F−(L
2(Td))

by a∗k, ak for momentum k ∈ Zd (compare to (2)) and the creation and annihilation op-
erators for momentum q ∈ Zd on the bosonic Fock space F+(L

2(Td)) by b∗q, bq. On H,
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Università degli Studi di Milano

Mathematical Methods for Many-Body Quantum Systems

Prof. Dr. Niels Benedikter

we write a∗k as an abbreviation for a∗k ⊗ id, i. e., acting on the other tensor factor as the
identity (and analogously for the b∗- and b-operators on the second tensor factor).

The Fröhlich Hamiltonian for the electron–phonon system acts on H by

H :=
∑
k∈Zd

ε(k)a∗kak︸ ︷︷ ︸
=:Hel

+
∑
q∈Zd

ω(q)(b∗qbq +
1

2
)︸ ︷︷ ︸

=:Hph

+
∑
k,q∈Zd

g(k, q)a∗k+qak(bq + b∗−q)︸ ︷︷ ︸
=:Hel-ph

.

Here ε, ω : Zd → [0,∞) are even functions, and g(k, q) = g(−k,−q) for all k, p ∈ Zd.
Moreover we write

H0 := Hel +Hph and H1 := He-ph .

a. Let A,B,C arbitary operators. Show that

[AB,C] = A[B,C] + [A,C]B .

Then find a similar formula which has a commutator on the left hand side but only
anticommutators on the right hand side.

b. Complete the details of the first-order perturbation theory prescription sketched in
the lecture to obtain the effective, purely fermionic, interaction

Heff =
∑

k,k′,q∈Zd

Veff(k, k
′, q)a∗k+qaka

∗
k′−qck′

where

Veff(k, k
′, q) = gk,qgk′,−q

ω(q)

(ε(k′)− ε(k′ − q)2 − ω(q)2)
.

(You need nothing but the CCR and CAR to complete this computation; this is the
convenient property of the Fock space method.)

Problem 8: Harmonic Oscillator

Show that the bosonic Fock space F+(C) over h = C can be identified with L2(R) such
that the vacuum vector Ω is the function x 7→ (π)−1/4e−x

2/2 and

a(1) =
1√
2

(
x+

d

dx

)
, a∗(1) =

1√
2

(
x− d

dx

)
. (3)

Hint: If (fj)j ∈ N is an orthonormal basis of h, then vectors obtained by applying
finitely many creation operators to the vacuum,

∏
j a

∗(fj)Ω, form a basis of Fock space.
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It is moreover useful to known that the space of functions p(x)e−x
2/2, where p is a

polynomial, is a dense subspace in L2(R).

Comment: Eq. (3) are the creation/annihilation operators of the harmonic oscillator.

“First quantization is a mystery, but second quantization is a functor.”
Edward Nelson

https://math.ucr.edu/home/baez/nth_quantization.html
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