PhD Course 2023: Mathematical Methods for Many-Body Quantum Systems

Exam Preparation

For all of the following problems let $\mathfrak{h}, \mathfrak{h}_{1}, \mathfrak{h}_{2}$ be Hilbert spaces.

Problem 1: Slater Determinants

Let $\mathfrak{h}=L^{2}\left(\mathbb{R}^{d}\right)$. Let $\left(f_{j}\right)_{j=1}^{N}$ an orthonormal system in \mathfrak{h}. Consider the fermionic case.
a. Show that $\psi:=a^{*}\left(f_{1}\right) a^{*}\left(f_{2}\right) \cdots a^{*}\left(f_{N}\right) \Omega \in \mathcal{F}_{-}(\mathfrak{h})$ can be identified with the function

$$
\psi\left(x_{1}, \ldots, x_{N}\right)=(N!)^{-1 / 2} \operatorname{det}\left(\left(f_{i}\left(x_{j}\right)\right)_{i, j=1}^{N}\right), \quad x_{1}, \ldots, x_{N} \in \mathbb{R}^{d}
$$

b. Show that the one-particle density matrix γ_{ψ} of a Slater determinant $\psi=\bigwedge_{j=1}^{N} f_{j}$ is a rank- N projection on the Hilbert space \mathfrak{h}, specifically in Dirac notation

$$
\gamma=\sum_{j=1}^{N}\left|f_{j}\right\rangle\left\langle f_{j}\right| .
$$

Problem 2: Unitary Groups and their Generator

Let $A=A^{*}$ a self-adjoint operator on \mathfrak{h}. Show that $U(t):=\Gamma\left(e^{-i t A}\right)$, on fermionic as on bosonic Fock space $\mathcal{F}_{ \pm}(\mathfrak{h})$, satisfies

$$
U(t) U(s)=U(t+s)
$$

and that, for vectors $\varphi \in \mathcal{F}_{ \pm}(\mathfrak{h})$ such that the limit exists, we have

$$
\left.i \frac{\mathrm{~d}}{\mathrm{~d} t} U(t) \varphi\right|_{t=0}:=\lim _{\varepsilon \rightarrow 0} i \frac{U(\varepsilon)-1}{\varepsilon} \varphi=\mathrm{d} \Gamma(A) \varphi .
$$

Problem 3: Canonical Commutation and Anticommutation Relations CCR/CAR

In the following consider ψ, φ as sequences in bosonic/fermionic Fock space with only a finite number of non-vanishing elements. Let $f, g \in \mathfrak{h}$.
a. Show that, in bosonic as in fermionic Fock space, we have

$$
\langle\psi, a(f) \varphi\rangle_{\mathcal{F}_{ \pm}}=\left\langle a^{*}(f) \psi, \varphi\right\rangle_{\mathcal{F}_{ \pm}} .
$$

b. Let $[A, B]:=A B-B A$ be the commutator of two operators A, B. Show that for $\psi \in \mathcal{F}_{+}$we have

$$
[a(f), a(g)] \psi=0, \quad\left[a^{*}(f), a^{*}(g)\right] \psi=0, \quad\left[a(f), a^{*}(g)\right] \psi=\langle f, g\rangle_{\mathfrak{h}} \psi .
$$

Show that on fermionic Fock space \mathcal{F}_{-}the analogous relations hold with the commutator replaced by the anticommutator $\{A, B\}:=A B+B A$.

Problem 4: Pair Interaction

Let \mathbb{T}^{d} be the d-dimensional torus of side lengths 2π.
a. Show that on $L^{2}\left(\mathbb{T}^{d N}\right)$, understood as a subspace of $\mathcal{F}_{ \pm}\left(L^{2}\left(\mathbb{T}^{d}\right)\right)$, in terms of the operator valued distributions, we have

$$
\begin{equation*}
\left\langle\psi, \sum_{i<j} V\left(x_{i}-x_{j}\right) \psi\right\rangle=\left\langle\psi, \frac{1}{2} \int V(x-y) a_{x}^{*} a_{y}^{*} a_{y} a_{x} \mathrm{~d} x \mathrm{~d} y \psi\right\rangle \tag{1}
\end{equation*}
$$

b. The plane waves

$$
e_{k}(x):=(2 \pi)^{-d / 2} e^{i k \cdot x}, \quad k \in \mathbb{Z}^{d}
$$

form an orthonormal basis of $L^{2}\left(\mathbb{T}^{d}\right)$. (Verify this claim if you are unsure!)
The identity operator can then be written as the infinite-rank projection

$$
\mathrm{id}=\sum_{k \in \mathbb{Z}^{d}}\left|e_{k}\right\rangle\left\langle e_{k}\right| .
$$

(Don't worry about convergence of the sums over \mathbb{Z}^{d}.) The Fourier transform of the operator-valued distributions can then be obtained as

$$
\begin{align*}
a_{x}^{*}=a^{*}(\delta(\cdot-x))=a^{*}\left(\sum_{k \in \mathbb{Z}^{d}} e_{k} \overline{e_{k}(x)}\right) & =\sum_{k \in \mathbb{Z}^{d}}(2 \pi)^{-d / 2} e^{-i k \cdot x} a^{*}\left(e_{k}\right) \\
& =: \sum_{k \in \mathbb{Z}^{d}}(2 \pi)^{-d / 2} e^{-i k \cdot x} a_{k}^{*} . \tag{2}
\end{align*}
$$

(In the last step we wrote $a_{k}^{*}:=a^{*}\left(e_{k}\right)$. Despite the abuse of notation, usually no confusion of a_{k}^{*} with the operator-valued distributions a_{x}^{*} should arise.) One says that a_{k}^{*} creates a particle in momentum-mode k.

Use (2) to express the second-quantized interaction (i.e., the operator on the right hand side of (11) in terms of the momentum-mode operators a_{k}^{*}, a_{k} and the Fourier transform \hat{V} of the interaction potential V. Your final result should contain three sums over momenta.

Problem 5: Example of Wick's Theorem

Let ψ be a quasifree state in bosonic or fermionic Fock space $\mathcal{F}_{ \pm}(\mathfrak{h})$. Let $f_{1}, f_{2}, f_{3}, f_{4} \in \mathfrak{h}$ be pairwise orthonormal. By explicit computation, check that the expectation value

$$
\left\langle\psi, a^{*}\left(f_{1}\right) a^{*}\left(f_{2}\right) a\left(f_{3}\right) a\left(f_{4}\right) \psi\right\rangle
$$

is given by the sum over pairings as claimed in Wick's theorem.
Express the result in terms of the one-particle reduced density operator γ and the pairing density operator α.

Problem 6: Bogoliubov Transformation

Consider a Bogoliubov map, given in the notation of Solovej's notes as

$$
\mathcal{V}=\left(\begin{array}{cc}
U & J^{*} V J^{*} \\
V & J U J^{*}
\end{array}\right)
$$

a. Show that, for $\mathbb{U}_{\mathcal{V}}$ being the implementation of the Bogoliubov map \mathcal{V} as a unitary on Fock space, we have

$$
\mathbb{U}_{\mathcal{V}} a(f) \mathbb{U}_{\mathcal{V}}^{*}=a(U f)+a^{*}\left(J^{*} V f\right)
$$

b. Show that the inverse transformation \mathcal{V}^{-1} is given by

$$
\left(\begin{array}{cc}
U^{*} & -V^{*} \\
-J V^{*} J & J U^{*} J^{*}
\end{array}\right) \text { for bosons; } \quad\left(\begin{array}{cc}
U^{*} & V^{*} \\
J V^{*} J & J U^{*} J^{*}
\end{array}\right) \text { for fermions. }
$$

c. Show that the number of particles in the "quasiparticle vacuum" $\Omega^{\prime}:=\mathbb{U}_{\mathcal{V}} \Omega$ is

$$
\left\langle\Omega^{\prime}, \mathcal{N} \Omega^{\prime}\right\rangle=\operatorname{tr} V^{*} V .
$$

Compare this to the Shale-Stinespring condition.

Problem 7: Perturbation Theory

Consider

$$
\mathcal{H}:=\mathcal{F}_{-}\left(L^{2}\left(\mathbb{T}^{d}\right)\right) \otimes \mathcal{F}_{+}\left(L^{2}\left(\mathbb{T}^{d}\right)\right) .
$$

We denote the creation and annihilation operators on the fermionic Fock space $\mathcal{F}_{-}\left(L^{2}\left(\mathbb{T}^{d}\right)\right)$ by a_{k}^{*}, a_{k} for momentum $k \in \mathbb{Z}^{d}$ (compare to (22) and the creation and annihilation operators for momentum $q \in \mathbb{Z}^{d}$ on the bosonic Fock space $\mathcal{F}_{+}\left(L^{2}\left(\mathbb{T}^{d}\right)\right)$ by b_{q}^{*}, b_{q}. On \mathcal{H},
we write a_{k}^{*} as an abbreviation for $a_{k}^{*} \otimes \mathrm{id}$, i. e., acting on the other tensor factor as the identity (and analogously for the b^{*} - and b-operators on the second tensor factor).

The Fröhlich Hamiltonian for the electron-phonon system acts on \mathcal{H} by

$$
H:=\underbrace{\sum_{k \in \mathbb{Z}^{d}} \varepsilon(k) a_{k}^{*} a_{k}}_{=: H_{\mathrm{el}}}+\underbrace{\sum_{q \in \mathbb{Z}^{d}} \omega(q)\left(b_{q}^{*} b_{q}+\frac{1}{2}\right)}_{=: H_{\mathrm{ph}}}+\underbrace{\sum_{k, q \in \mathbb{Z}^{d}} g(k, q) a_{k+q}^{*} a_{k}\left(b_{q}+b_{-q}^{*}\right)}_{=: H_{\mathrm{el}-\mathrm{ph}}} .
$$

Here $\varepsilon, \omega: \mathbb{Z}^{d} \rightarrow[0, \infty)$ are even functions, and $g(k, q)=\overline{g(-k,-q)}$ for all $k, p \in \mathbb{Z}^{d}$. Moreover we write

$$
H_{0}:=H_{\mathrm{el}}+H_{\mathrm{ph}} \quad \text { and } \quad H_{1}:=H_{\mathrm{e}-\mathrm{ph}} .
$$

a. Let A, B, C arbitary operators. Show that

$$
[A B, C]=A[B, C]+[A, C] B
$$

Then find a similar formula which has a commutator on the left hand side but only anticommutators on the right hand side.
b. Complete the details of the first-order perturbation theory prescription sketched in the lecture to obtain the effective, purely fermionic, interaction

$$
H_{\mathrm{eff}}=\sum_{k, k^{\prime}, q \in \mathbb{Z}^{d}} V_{\mathrm{eff}}\left(k, k^{\prime}, q\right) a_{k+q}^{*} a_{k} a_{k^{\prime}-q}^{*} c_{k^{\prime}}
$$

where

$$
V_{\mathrm{eff}}\left(k, k^{\prime}, q\right)=g_{k, q} g_{k^{\prime},-q} \frac{\omega(q)}{\left(\varepsilon\left(k^{\prime}\right)-\varepsilon\left(k^{\prime}-q\right)^{2}-\omega(q)^{2}\right)} .
$$

(You need nothing but the CCR and CAR to complete this computation; this is the convenient property of the Fock space method.)

Problem 8: Harmonic Oscillator

Show that the bosonic Fock space $\mathcal{F}_{+}(\mathbb{C})$ over $\mathfrak{h}=\mathbb{C}$ can be identified with $L^{2}(\mathbb{R})$ such that the vacuum vector Ω is the function $x \mapsto(\pi)^{-1 / 4} e^{-x^{2} / 2}$ and

$$
\begin{equation*}
a(1)=\frac{1}{\sqrt{2}}\left(x+\frac{\mathrm{d}}{\mathrm{~d} x}\right), \quad a^{*}(1)=\frac{1}{\sqrt{2}}\left(x-\frac{\mathrm{d}}{\mathrm{~d} x}\right) . \tag{3}
\end{equation*}
$$

Hint: If $\left(f_{j}\right)_{j} \in \mathbb{N}$ is an orthonormal basis of \mathfrak{h}, then vectors obtained by applying finitely many creation operators to the vacuum, $\prod_{j} a^{*}\left(f_{j}\right) \Omega$, form a basis of Fock space.

It is moreover useful to known that the space of functions $p(x) e^{-x^{2} / 2}$, where p is a polynomial, is a dense subspace in $L^{2}(\mathbb{R})$.

Comment: Eq. (3) are the creation/annihilation operators of the harmonic oscillator.
"First quantization is a mystery, but second quantization is a functor." Edward Nelson
https://math.ucr.edu/home/baez/nth_quantization.html

