Metodi Matematici della Meccanica Quantistica

Assignment 6/6

Problem 1: Multiplication Operators (5+5+5 points)

a. Let $f : \mathbb{R}^n \to \mathbb{R}$ measurable. Show that for all $g \in \mathcal{B}(\mathbb{R})$ we have

$$g(T_f) = T_{g \circ f} \; .$$

b. Let $A = A^*$, U unitary, $B := UAU^{-1}$. Show that for all $f \in \mathcal{B}(\mathbb{R})$ we have

$$f(B) = Uf(A)U^{-1} .$$

c. Let $A = -i\partial$ on $L^2(\mathbb{R})$ (the momentum operator). Compute as explicitly as possible, for $\Omega \subset \mathbb{R}$ a Borel set, the expectation value

$$\langle \varphi, \chi_{\Omega}(A) \varphi \rangle$$
, $\varphi \in L^2(\mathbb{R})$.

Problem 2: Inverse Function (5 points)

Let $A = A^*$, let $f : \sigma(A) \to \mathbb{R}$ a measurable injective function with measurable inverse function f^{-1} (defined on the image of f). Is it true that $f^{-1}(f(A)) = A$? Provide a proof or a counterexample.

Problem 3: Commuting Operators (5 points)

Let A, B be commuting self-adjoint operators on a Hilbert space \mathcal{H} . Show that

$$f(A)g(B) = g(B)f(A)$$
 for all $f, g \in \mathcal{B}(\mathbb{R})$.

Problem 4: Domain (5 points)

Under the assumptions of Lemma 10.6 of the lecture, show that

$$D(\phi(f)) = \{\varphi \in \mathcal{H} \mid \int |f|^2 \mathrm{d}\mu_{\varphi} < \infty\}.$$

Problem 5: An Integral Resolvent Representation (2+4+4 points)

Let $A = A^*$ be an operator on a Hilbert space \mathcal{H} , satisfying $A \ge 0$ (recall that this means $\langle \varphi, A\varphi \rangle \ge 0$ for all $\varphi \in \mathcal{H}$).

- **a.** Show that $\sigma(A) \subset [0, \infty)$.
- **b.** Show that there exists a $c \in [0, \infty)$ such that

$$\sqrt{A} = c \int_0^\infty \left(1 - \lambda^2 \left(A + \lambda^2 \right)^{-1} \right) \mathrm{d}\lambda \;.$$

c. Let us now simplify to the finite-dimensional case $\mathcal{H} = \mathbb{C}^n$. Let $D \ge 0$ be diagonal in the canonical basis, let $v = (1, 1, 1, ..., 1)^T \in \mathbb{C}^n$ (also in the canonical basis) and P_v the rank-one orthogonal projection on v. Compute \sqrt{A} as explicitly as possible. (*Hint:* Look up the Sherman-Morrison formula and apply it to the resolvent.)