Metodi Matematici della Meccanica Quantistica

Assignment 6/6

To be handed in on Wednesday, January 10, 2024, before 10:30 via email (scanned or $\mathrm{E}_{\mathrm{E}} \mathrm{T}$) to sascha.lill@unimi.it or on paper at the beginning of the lecture.

Problem 1: Multiplication Operators ($5+5+5$ points)

a. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ measurable. Show that for all $g \in \mathcal{B}(\mathbb{R})$ we have

$$
g\left(T_{f}\right)=T_{g \circ f} .
$$

b. Let $A=A^{*}, U$ unitary, $B:=U A U^{-1}$. Show that for all $f \in \mathcal{B}(\mathbb{R})$ we have

$$
f(B)=U f(A) U^{-1}
$$

c. Let $A=-i \partial$ on $L^{2}(\mathbb{R})$ (the momentum operator). Compute as explicitly as possible, for $\Omega \subset \mathbb{R}$ a Borel set, the expectation value

$$
\left\langle\varphi, \chi_{\Omega}(A) \varphi\right\rangle, \quad \varphi \in L^{2}(\mathbb{R})
$$

Problem 2: Inverse Function (5 points)

Let $A=A^{*}$, let $f: \sigma(A) \rightarrow \mathbb{R}$ a measurable injective function with measurable inverse function f^{-1} (defined on the image of f). Is it true that $f^{-1}(f(A))=A$? Provide a proof or a counterexample.

Problem 3: Commuting Operators (5 points)

Let A, B be commuting self-adjoint operators on a Hilbert space \mathcal{H}. Show that

$$
f(A) g(B)=g(B) f(A) \quad \text { for all } f, g \in \mathcal{B}(\mathbb{R})
$$

Problem 4: Domain (5 points)

Under the assumptions of Lemma 10.6 of the lecture, show that

$$
D(\phi(f))=\left\{\left.\varphi \in \mathcal{H}\left|\int\right| f\right|^{2} \mathrm{~d} \mu_{\varphi}<\infty\right\}
$$

Problem 5: An Integral Resolvent Representation (2+4+4 points)

Let $A=A^{*}$ be an operator on a Hilbert space \mathcal{H}, satisfying $A \geq 0$ (recall that this means $\langle\varphi, A \varphi\rangle \geq 0$ for all $\varphi \in \mathcal{H})$.
a. Show that $\sigma(A) \subset[0, \infty)$.
b. Show that there exists a $c \in[0, \infty)$ such that

$$
\sqrt{A}=c \int_{0}^{\infty}\left(1-\lambda^{2}\left(A+\lambda^{2}\right)^{-1}\right) \mathrm{d} \lambda .
$$

c. Let us now simplify to the finite-dimensional case $\mathcal{H}=\mathbb{C}^{n}$. Let $D \geq 0$ be diagonal in the canonical basis, let $v=(1,1,1, \ldots, 1)^{T} \in \mathbb{C}^{n}$ (also in the canonical basis) and P_{v} the rank-one orthogonal projection on v. Compute \sqrt{A} as explicitly as possible. (Hint: Look up the Sherman-Morrison formula and apply it to the resolvent.)

