Metodi Matematici della Meccanica Quantistica

Assignment 5

Problem 1: $f(x)g(-i\nabla)$ (10 points)

Let $f, g \in L^2(\mathbb{R}^n)$ and let $B := f(x)g(-i\nabla)$. Show that $||B|| \le (2\pi)^{-n/2} ||f||_{L^2} ||g||_{L^2}$ and $||B|| \le ||f||_{L^\infty} ||g||_{L^\infty}$.

Problem 2: Essential Spectrum of $-\Delta$ (10 points)

Consider $-\Delta : H^2(\mathbb{R}^n) \subset L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$. Show that $\sigma_{\text{ess}}(-\Delta) \supset [0, \infty)$ by explicitly constructing Weyl sequences in position space.

Problem 3: Weak Compactness (10 points)

Show—without using the Banach–Alaoglu theorem—that any bounded sequence in a separable Hilbert space has a weakly convergent subsequence.

Problem 4: Spectral Projection (10 points)

Let $A = A^*$ a densely defined operator on a Hilbert space \mathcal{H} . Let λ be an isolated point of the spectrum $\sigma(A)$. Let $P := \chi_{\{\lambda\}}(A)$ the spectral projection on $\{\lambda\}$ and $P^{\perp} := 1 - P$. Show that $\lambda \notin \sigma(A \upharpoonright_{P^{\perp}\mathcal{H}})$.

Problem 5: Approximating Sequence (10 points)

Let $f \in \mathcal{S}(\mathbb{R}^n)$. Show that there exists a sequence of functions $f_N(x)$ with $f_N(x) \to f(x)$ for all $x \in \mathbb{R}^n$ and $||f_N||_{\infty} := \sup_{x \in \mathbb{R}^n} |f_N(x)| \le ||\hat{f}||_1 + 1$.