Metodi Matematici della Meccanica Quantistica

Assignment 4

To be handed in on Wednesday, November 22, 2023, before 10:30 via email (scanned or $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$) to sascha.lill@unimi.it or on paper at the beginning of the lecture.

Problem 1: Method of Stationary Phase ($7+8$ points)

a. Let $\omega \in C^{\infty}\left(\mathbb{R}^{n}\right)$ and $u \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. Let G be an open neighbourhood of $\{\nabla \omega(k) \mid$ $k \in \operatorname{supp}(u)\}$.

Show - for simplicity only in the case of space dimension $n=1$ - that for all $m \in \mathbb{N}$ there exists $c_{m} \in \mathbb{R}$ such that

$$
\left|\int_{\mathbb{R}^{n}} e^{i(k \cdot x-\omega(k) t)} u(k) \mathrm{d} k\right| \leq \frac{c_{m}}{(1+|t|)^{m}} \quad \text { for all } x \text { and } t \text { satisfying } \frac{x}{t} \notin G \text {. }
$$

Heuristics: This quantifies the intuition that positive and negative parts of the integral cancel if the phase is rapidly oscillating.

Hint: Let $\phi(k):=k \frac{x}{t}-\omega(k)$. Use

$$
e^{i \phi(k) t}=\left(\frac{1}{i \phi^{\prime}(k) t} \frac{\mathrm{~d}}{\mathrm{~d} k}\right)^{m} e^{i \phi(k) t}
$$

and integration by parts.
b. Let $\omega(p):=\sqrt{p^{2}+1}$ and consider the pseudo-relativistic Hamiltonian

$$
H=H_{0}+V, \quad H_{0}=\sqrt{-\Delta+1}:=\mathcal{F}^{-1} T_{\omega} \mathcal{F}
$$

where the potential $V \in L^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ satisfies, for some $\mu>1$, the decay $|V(x)| \leq$ const $\cdot|x|^{-\mu}$ for $|x|>R$. You can take for granted that $H=H^{*}$ on $D\left(H_{0}\right)$.

Show that the wave operators $\Omega_{ \pm}$exist.
Hint: Let $D=\left\{\varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right) \mid \hat{\varphi} \in C_{0}^{\infty}\left(\mathbb{R}^{n} \backslash\{0\}\right)\right\}$. Let $\varphi \in D$ with $\operatorname{supp}(\hat{\varphi}) \subset\{|p| \geq$ $\varepsilon\}$. Then for all $p \in \operatorname{supp}(\hat{\varphi})$ we have by monotonicity

$$
|\nabla \omega(p)|=\frac{|p|}{\sqrt{p^{2}+1}} \geq \frac{\varepsilon}{\sqrt{\varepsilon^{2}+1}}=: 2 \delta .
$$

Decompose the potential into parts $|x| \leq \delta t$ and $|x|>\delta t$.

Problem 2: Abelian Limits (5 +5 points)

a. Let $H_{0}=-\Delta / 2$ in $L^{2}\left(\mathbb{R}^{3}\right)$ and $E \in \mathbb{R}$. Show that

$$
\mathrm{s}-\lim _{\varepsilon \downarrow 0} \varepsilon\left(H_{0}-E+i \varepsilon\right)^{-1}=0
$$

Hint: Use the Fourier transform and choose a convenient dense subspace.
b. Let $\varphi:[0, \infty) \rightarrow X$ be continuous, X a Banach space and assume that $\varphi_{\infty}:=$ $\lim _{t \rightarrow \infty} \varphi(t)$ exists. Prove that

$$
\varphi_{\infty}=\lim _{\varepsilon \downarrow 0} \varepsilon \int_{0}^{\infty} e^{-\varepsilon t} \varphi(t) \mathrm{d} t
$$

Problem 3: Compact Operators ($2+3$ points)

a. Let X, Y, Z be Banach spaces. Let $K \in \mathcal{L}(X, Y)$ and $L \in \mathcal{L}(Y, Z)$ (i. e., bounded operators). Let moreover K or L be compact. Show that in both cases $L K$ is compact.
b. Show that if K is a finite-rank operator, then it is also compact.

