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Università degli studi di Milano, Fall 2023

Prof. Dr. Niels Benedikter

Dr. Sascha Lill

Metodi Matematici della Meccanica Quantistica

Solutions for Assignment 3

Discussed on Friday, November 10, 2023.
In case of questions, contact sascha.lill@unimi.it .

Problem 1: Proof of the Weyl criterion (10 points)

We have to show that for A : D ⊂ X → X, with X being a Banach space, for λ ∈ C, the
existence of a Weyl sequence (xn)n∈N ⊂ D with ∥xn∥ = 1, limn→∞ ∥(A − λ)xn∥ = 0
implies that λ ∈ σ(A). That is, (A− λ) has no bounded inverse (A− λ)−1 : X → X.
If for some xn, we should have ∥(A− λ)xn∥ = 0 ⇒ (A− λ)xn = 0, then it is clear that
(A− λ)−1 can never exist, since we would have (A− λ)−1(A− λ)xn = 0, which is never
xn.
Now, assume that (A−λ)xn ̸= 0 ∀n ∈ N and suppose some bounded inverse (A−λ)−1 :

X → X of (A− λ) would exist. Then, the sequence yn := (A−λ)xn

∥(A−λ)xn∥ is well-defined with

∥yn∥ = 1 and we have

∥(A− λ)−1yn∥ =
∥(A− λ)−1(A− λ)xn∥

∥(A− λ)xn∥
=

∥xn∥
∥(A− λ)xn∥

→ ∞ , (1)

so the operator (A− λ)−1 is unbounded, which yields a contradiction. □

Problem 2: Coulomb potential (5+5 points)

a. We need to show that for every V ∈ L2 + L∞(R3) and every ε > 0, we can split
V = V ε

2 + V ε
∞ such that V ε

∞ ∈ L∞(R3) and V ε
2 ∈ L2(R3) with ∥V ε

2 ∥L2 < ε.
Recall that V ∈ L2 + L∞ means we can split V = V2 + V∞ with V2 ∈ L2, V∞ ∈ L∞.
We will now “transfer” parts of V2 into V∞ to make the L2-norm small. This can
conveniently be done introducing the (measurable) level sets1

χL := {x ∈ R3 : |V2(x)| ≤ L} , L > 0 . (2)

We then split

V2 = V2,≤L+V2,>L, V2,≤L(x) :=

{
V2(x) if x ∈ χL

0 else
, V2,>L :=

{
0 if x ∈ χL

V2(x) else .

(3)

1Strictly speaking, since V2 is only defined up to modifications on a null set, also χL is defined up to
modifications on a null set. So χL = [χL] is actually an equivalence class, where two representatives,
say χL,1 and χL,2, are allowed to differ by a null set. However, for any integrable u, we have∫
χL,1

u =
∫
χL,2

u since adding or removing a null set to/from the domain does not change the

integral. So the value of integrals like
∫
χL

u is unique.
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Obviously, V2,≤L ∈ L∞(R3) with ∥V2,≤L∥L∞ ≤ L. Further, the set R3 \ χL converges
pointwise to ∅ as L→ ∞, so∫

χL

|V2,>L(x)|2dx→ 0 ⇒ ∥V2,>L∥L2 → 0 as L→ ∞ . (4)

We can thus find some large enough L > 0, such that ∥V2,>L∥L2 < ε. Setting
V ε
2 := V2,>L and V ε

∞ := V∞ + V2,≤L then achieves the desired split. □

b. We need to show that the Coulomb potential V (x) := 1
|x| , x ∈ R3 \{0} is in L2+L∞.

As above, we work with the level sets

χL := {x ∈ R3 : |V (x)| ≤ L} , L > 0 . (5)

Setting L = 1, we split

V = V≤1 + V>1, V≤1(x) :=

{
V (x) if x ∈ χ1

0 else
, V>1 :=

{
0 if x ∈ χ1

V (x) else
.

(6)
Clearly, V≤1 ∈ L∞ with ∥V≤1∥L∞ = 1. Further, the pole of x 7→ |V>1(x)|2 at x = 0 is
of order 2 < 3, so V>1 ∈ L2. More precisely, using spherical coordinates,

∥V>1∥2L2 =

∫
R\χL

|V (x)|2dx =

∫ 1

0

1

r2
4πr2dr = 4π . (7)

Thus, V = V≤1 + V>1 is a suitable split to show V ∈ L2 + L∞. □

Problem 3: Sobolev inequalities (5+5 points)

a. Our goal is to find the exponent q = q(n, p), for which the Sobolev inequality can
hold:

∥f∥Lq ≤ Cn,p,q∥∇f∥Lp , (8)

while using a rescaling argument via fλ(x) = f(λx), λ > 0. The rescaling argument
bases on the fact that (8) has to hold for any fλ in place of f . That is,

∥fλ∥Lq ≤ Cn,p,q∥∇fλ∥Lp (9)

has to hold. We evaluate the norm on the left-hand side, using a substitution y = λx

∥fλ∥Lq =

(∫
Rn

|f(λx)|qdx
) 1

q

=

(∫
Rn

|f(y)|qλ−ndy

) 1
q

= λ−
n
q ∥f∥Lq . (10)

For ∥∇fλ∥Lp , we make use of the chain rule with g : Rn → Rn, g(x) := λx, whose
Jacobian is Dg(x) = λ idn×n:

∇fλ(x) = ∇(f ◦ g)(x) = Dg(x) · (∇f)(g(x)) = λ(∇f)(λx) . (11)
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Thus, substituting y = λx yields

∥∇fλ∥Lp =

(∫
Rn

|λ(∇f)(λx)|pdx
) 1

p

=

(∫
Rn

|∇f(y)|pλp−ndy

) 1
p

= λ1−
n
p ∥∇f∥Lp .

(12)
As (8) is valid, (9) can only hold for all λ > 0 if

λ1−
n
p = λ−

n
q ⇔ 1− n

p
= −n

q
⇔ 1

q
=

1

p
− 1

n
⇔ q =

pn

n− p
, (13)

which is the condition on q, we were looking for. Note that one commonly calls q
the Sobolev conjugate of (n, p). □

b. Here, we wish to show that the Sobolev embedding Hm(Rn) ⊂ L∞(Rn) is true for
m > n

2
. This requires proving

∥u∥L∞ ≤ Cm,n∥u∥Hm (14)

for any u ∈ Hm(Rn) and a suitable Cm,n > 0 uniform in u. The Sobolev norm is
conveniently expressed2 using the Fourier transform

û(k) := (2π)−
n
2

∫
Rn

u(x)e−ikxdx ⇔ u(x) := (2π)−
n
2

∫
Rn

u(k)eikxdk (15)

and Plancherel’s theorem ∥u∥L2 = ∥û∥L2 :

∥u∥Hm =

 ∑
|α|<m

∥Dαu∥2L2

 1
2

=

 ∑
|α|<m

∥kαû∥2L2

 1
2

. (16)

The L∞-norm is bounded by

∥u∥L∞ = ess sup
x∈Rn

|u(x)| ≤ (2π)−
n
2

∫
Rn

|û(x)|dx = (2π)−
n
2 ∥û∥L1 . (17)

Now, observe that for m > n
2
, the function

f(k) :=
1

1 + km1 + . . .+ kmn
(18)

decays at |k| → ∞ faster than |k|−n
2 , so f ∈ L2(Rn) with ∥f∥L2 =: cm,n. Thus, we

can apply Hölder’s inequality as

∥û∥L1 =

∥∥∥∥f 1f û
∥∥∥∥
L1

≤ ∥f∥L2

∥∥∥∥ 1f û
∥∥∥∥
L2

≤ cm,n

(
∥û∥2L2 + ∥km1 û∥2L2 + . . .+ ∥kmn û∥2L2

) 1
2

≤cm,n∥u∥Hm .
(19)

2Here, we use the standard multi-index notation α = (α1, . . . , αn), αj ∈ N, with |α| =
∑n

j=1 αj , D
α =

∂α1
1 . . . ∂αn

n , kα = kα1
1 · . . . · kαn

n .
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Combining with (17), this yields the desired Sobolev bound (14).
Note that sometimes, one uses the different convention ∥u∥Hm := ∥⟨k⟩mû∥L2 with
the Japanese symbol ⟨k⟩ :=

√
1 + |k|2. The proof is then analogous with f(k) :=

⟨k⟩−m. □

Problem 4: On the Existence Proof for SCUGs (5+5 points)

Let A : D ⊂ H → H be a self-adjoint operator in a Hilbert space H.

In the lecture we defined

a. Recall that A : D ⊂ H → H is self-adjoint, Bm := im(A + im)−1, m ∈ Z, Am :=
BmAB−m and

Um(t) := e−iAmt :=
∑
k∈N

1

k!
(−itAm)

k . (20)

We have to show that Um(t) is a strongly continuous unitary group (SCUG) and
that U(t) := s -limm→∞ Um(t) exists. Checking that Um(t) is a SCUG amounts to
verifying the three axioms:

• First, Um(t) is unitary: It is easy to see that Am is bounded since B±m are
bounded and

BmA = Bm(A+ im− im) = im− im(A+ im)−1im (21)

is also bounded. Further, it is easy to check that B∗
m = B−m, so Am is self-

adjoint. Now, Um(t)
∗ =

∑
k

1
k!
(itA∗

m)
k =

∑
k

1
k!
(itAm)

k, which indeed agrees
with Um(t)

−1, as by the Baker-Campbell-Hausdorff (BCH) formula,

Um(t)Um(t)
∗ = e−itAmeitAm = e−itAm+itAm = e0 = 1 . (22)

• Um(t+ s) = e−i(t+s)Am = e−itAme−isAm = Um(t)Um(s) due to BCH.

• Finally, we have strong continuity, as for φ ∈ H:

lim
t→0

∥Um(t)φ− φ∥ = lim
t→0

∥∥∥∥∥
∞∑
k=1

1

k!
(−itAm)

k φ

∥∥∥∥∥ ≤ lim
t→0

∞∑
k=1

|t|k

k!
∥Am∥k∥φ∥ = 0 .

(23)

Next, we show that U(t)φ := limm→∞ Um(t)φ exists for all φ ∈ D, t ∈ R. By
completeness ofH, this is true if we can show that (Um(t)φ)m∈N is a Cauchy sequence.
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To do so, we use the fundamental theorem of calculus, as well as the fact that An, Am

commute with Um(t) (which can easily be checked by explicit computation):

Un(t)φ− Um(t)φ =

∫ t

0

d

ds
(Un(s)Um(t− s))φds = i

∫ t

0

Un(s)(Am − An)Um(t− s)φds

=i

∫ t

0

Un(s)Um(t− s)(Am − An)φds .

(24)
Thus, using ∥Un(t)∥ = 1,

∥Un(t)φ− Um(t)φ∥ ≤|i|
∫ t

0

∥Un(t)∥∥Um(t− s)∥∥Amφ− Anφ∥ds

=|t|∥Amφ− Anφ∥ .
(25)

Now, since (Anφ)n∈N is a Cauchy sequence, following (25), so is (Um(t)φ)m∈N.
The statement can now easily be generalized from φ ∈ D to φ ∈ H: We approximate
φ ∈ H by a sequence (φk)k∈N ⊂ D in order to show that (Um(t)φ)m∈N is a Cauchy
sequence:

∥Um(t)φ−Un(t)φ∥ ≤ ∥Um(t)φ−Um(t)φk∥+∥Um(t)φk−Un(t)φk∥+∥Un(t)φk−Un(t)φ∥ .
(26)

All three terms can be made arbitrarily small by choosing k large enough. Therefore,
(Um(t)φ)m∈N is indeed a Cauchy sequence. □

b. We have to show that U(t) is a SCUG and its generator is A. First, we verify the
axioms of a SCUG:

• U(t) is unitary: First, observe that ∀ψ, φ ∈ H,

⟨ψ,U(t)φ⟩ = lim
m→∞

⟨ψ,Um(t)φ⟩ = lim
m→∞

⟨Um(t)
∗ψ, φ⟩ , (27)

so U(t)∗ = limm→∞ Um(t)
∗. Now, by unitarity of Um(t) and the fact that the

limit of products is the product of limits (if it exists):

1 = lim
m→∞

Um(t)
∗Um(t) = U(t)∗U(t) , (28)

so U(t)∗ is indeed U(t)−1.

• U(t+ s) = s -limm→∞ Um(t+ s) = s -limm→∞ Um(t)Um(s) = U(t)U(s).

• Strong continuity: For any m ≥ 1, it holds true that

∥U(t)φ− φ∥ ≤ ∥U(t)φ− Um(t)φ∥+ ∥Um(t)φ− φ∥ . (29)

Now, for any given ε > 0, we can achieve ∥U(t)φ − Um(t)φ∥ < ε
2
for m large

enough, and ∥Um(t)φ − φ∥ < ε
2
for t small enough. So ∥U(t)φ − φ∥ gets

arbitrarily small as t→ 0, and U(t)φ→ φ.
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Finally, A being a generator of U(t) means that Aφ = limt→0 i
U(t)φ−φ

t
for any φ ∈ D.

Now, by the fundamental theorem of calculus and since Am generates Um(t),

i
U(t)φ− φ

t
= lim

m→∞
i
Um(t)φ− φ

t
= lim

m→∞

1

t

∫ t

0

Um(s)Amφds . (30)

We now show that the right-hand side amounts to 1
t

∫ t

0
U(s)Aφds, which converges

to Aφ as t→ ∞, and would thus finish the proof.∥∥∥∥ lim
m→∞

1

t

∫ t

0

Um(s)Amφds−
1

t

∫ t

0

U(s)Aφds

∥∥∥∥
≤1

t

∫ t

0

lim
m→∞

∥Um(s)Amφ− U(s)Aφ∥ds

≤1

t

∫ t

0

lim
m→∞

(∥Amφ− Aφ∥+ ∥Um(s)Aφ− U(s)Aφ∥)ds = 0 ,

(31)

as the term in the bracket vanishes as m → ∞. Here, we were able to exchange
integral and limit because of the dominated convergence theorem, which holds since

∥Amφ− Aφ∥+ ∥Um(s)Aφ− U(s)Aφ∥
≤∥Amφ− Aφ∥+

(
∥Um(s)∥+ ∥U(s)∥

)
∥Aφ∥

=∥Amφ− Aφ∥+ 2∥Aφ∥
(32)

is uniformly bounded in m. This finishes the proof. □

Problem 5: Resolvent of the Laplacian (10 points)

We have to show that for H0 = −∆, φ ∈ L2(R3) and κ > 0, we have((
H0 + κ2

)−1
φ
)
(x) =

1

4π

∫
R3

e−κ|x−y|

|x− y|
φ(y)dy . (33)

The action of (H0 + κ2)
−1

is best described in Fourier space, where it amounts to a
multiplication of φ̂(k) by f(k) := 1

|k|2+κ2 . Thus, by the convolution theorem,((
H0 + κ2

)−1
φ
)
(x) = (fφ̂)∨(x) = (2π)−

3
2 (f̌ ∗ φ)(x) = (2π)−

3
2

∫
Rn

f̌(x− y)φ(y)dy .

(34)

Thus, it remains to show that (2π)−
3
2 f̌(x) = e−κ|x|

4π|x| in order to finish the proof. This is
done by evaluating the Fourier transform in spherical coordinates, using the substitution
y = cos θ:

(2π)−
3
2 f̌(x) = (2π)−3

∫
R3

f(k)eikxdk = (2π)−3

∫ ∞

0

∫ π

0

eir|x| cos θ

r2 + κ2
2πr2 sin θdθdr

=(2π)−2

∫ ∞

0

∫ 1

−1

eir|x|y

r2 + κ2
r2dydr = (2π)−2

∫ ∞

0

eir|x| − e−ir|x|

i|x|(r2 + κ2)
rdr

=(2π)−2ℑ
∫ ∞

0

2reir|x|

|x|(r2 + κ2)
dr =: (2π)−2ℑ

∫ ∞

0

g(r)dr .

(35)
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0 R−R

γR
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Figure 1: The integration contour around the pole at iκ.

We can now interpret g(r) as a complex function g : C → C, which has two poles
at r = ±iκ. This allows us to exploit the residue theorem: Let R > κ and define the
integration contour γR ⊂ C, which runs from −R to R along the real axis and then closes
in a semi-circle around 0 with radius R, see Figure 1. Then, by the residue theorem,∮

γR

g(z)dz = 2πi Res(g, iκ) = 2πi lim
z→iκ

(z − iκ)g(z)

=2πi lim
z→iκ

2zeiz|x|

|x|(z + iκ)
= 2πi

e−κ|x|

|x|
.

(36)

On the other hand, as R → ∞, we get

lim
R→∞

∮
γR

g(z)dz =

∫ ∞

−∞
g(r)dr + lim

R→∞

∫ π

0

g(Reiθ)Rieiθdθ (37)

Now,

|g(Reiθ)| ≤ 2R

|x|(R2 − κ2)
→ 0 as R → ∞ , (38)

so the second integral vanishes due to Jordan’s lemma and we are left with∫ ∞

−∞
g(r)dr = 2πi

e−κ|x|

|x|
. (39)

To apply this result to (35), we still need to extend the integral
∫∞
0
g(r)dr from (35) to

the real line, which requires adding∫ 0

−∞
g(r)dr =

∫ ∞

0

g(−r)dr =
∫ ∞

0

g(r)dr (40)

We conclude:

2(2π)−
3
2 f̌(x) = (2π)−2ℑ

∫ ∞

−∞
g(r)dr = 2

e−κ|x|

4π|x|
, (41)

which renders the desired result (2π)−
3
2 f̌(x) = e−κ|x|

4π|x| . □
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