Metodi Matematici della Meccanica Quantistica

Solutions for Assignment 3

Discussed on Friday, November 10, 2023.
In case of questions, contact sascha.lill@unimi.it.

Problem 1: Proof of the Weyl criterion (10 points)

We have to show that for $A: D \subset X \rightarrow X$, with X being a Banach space, for $\lambda \in \mathbb{C}$, the existence of a Weyl sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subset D$ with $\left\|x_{n}\right\|=1, \lim _{n \rightarrow \infty}\left\|(A-\lambda) x_{n}\right\|=0$ implies that $\lambda \in \sigma(A)$. That is, $(A-\lambda)$ has no bounded inverse $(A-\lambda)^{-1}: X \rightarrow X$.
If for some x_{n}, we should have $\left\|(A-\lambda) x_{n}\right\|=0 \Rightarrow(A-\lambda) x_{n}=0$, then it is clear that $(A-\lambda)^{-1}$ can never exist, since we would have $(A-\lambda)^{-1}(A-\lambda) x_{n}=0$, which is never x_{n}.
Now, assume that $(A-\lambda) x_{n} \neq 0 \forall n \in \mathbb{N}$ and suppose some bounded inverse $(A-\lambda)^{-1}$: $X \rightarrow X$ of $(A-\lambda)$ would exist. Then, the sequence $y_{n}:=\frac{(A-\lambda) x_{n}}{\left\|(A-\lambda) x_{n}\right\|}$ is well-defined with $\left\|y_{n}\right\|=1$ and we have

$$
\begin{equation*}
\left\|(A-\lambda)^{-1} y_{n}\right\|=\frac{\left\|(A-\lambda)^{-1}(A-\lambda) x_{n}\right\|}{\left\|(A-\lambda) x_{n}\right\|}=\frac{\left\|x_{n}\right\|}{\left\|(A-\lambda) x_{n}\right\|} \rightarrow \infty, \tag{1}
\end{equation*}
$$

so the operator $(A-\lambda)^{-1}$ is unbounded, which yields a contradiction.

Problem 2: Coulomb potential ($5+5$ points)

a. We need to show that for every $V \in L^{2}+L^{\infty}\left(\mathbb{R}^{3}\right)$ and every $\varepsilon>0$, we can split $V=V_{2}^{\varepsilon}+V_{\infty}^{\varepsilon}$ such that $V_{\infty}^{\varepsilon} \in L^{\infty}\left(\mathbb{R}^{3}\right)$ and $V_{2}^{\varepsilon} \in L^{2}\left(\mathbb{R}^{3}\right)$ with $\left\|V_{2}^{\varepsilon}\right\|_{L^{2}}<\varepsilon$.
Recall that $V \in L^{2}+L^{\infty}$ means we can split $V=V_{2}+V_{\infty}$ with $V_{2} \in L^{2}, V_{\infty} \in L^{\infty}$. We will now "transfer" parts of V_{2} into V_{∞} to make the L^{2}-norm small. This can conveniently be done introducing the (measurable) level sets ${ }^{1}$

$$
\begin{equation*}
\chi_{L}:=\left\{x \in \mathbb{R}^{3}:\left|V_{2}(x)\right| \leq L\right\}, \quad L>0 . \tag{2}
\end{equation*}
$$

We then split

$$
V_{2}=V_{2, \leq L}+V_{2,>L}, \quad V_{2, \leq L}(x):=\left\{\begin{array}{l}
V_{2}(x) \text { if } x \in \chi_{L} \tag{3}\\
0 \text { else }
\end{array} \quad, \quad V_{2,>L}:= \begin{cases}0 & \text { if } x \in \chi_{L} \\
V_{2}(x) & \text { else } .\end{cases}\right.
$$

[^0]Obviously, $V_{2, \leq L} \in L^{\infty}\left(\mathbb{R}^{3}\right)$ with $\left\|V_{2, \leq L}\right\|_{L^{\infty}} \leq L$. Further, the set $\mathbb{R}^{3} \backslash \chi_{L}$ converges pointwise to \emptyset as $L \rightarrow \infty$, so

$$
\begin{equation*}
\int_{\chi_{L}}\left|V_{2,>L}(x)\right|^{2} \mathrm{~d} x \rightarrow 0 \quad \Rightarrow \quad\left\|V_{2,>L}\right\|_{L^{2}} \rightarrow 0 \quad \text { as } L \rightarrow \infty \tag{4}
\end{equation*}
$$

We can thus find some large enough $L>0$, such that $\left\|V_{2,>L}\right\|_{L^{2}}<\varepsilon$. Setting $V_{2}^{\varepsilon}:=V_{2,>L}$ and $V_{\infty}^{\varepsilon}:=V_{\infty}+V_{2, \leq L}$ then achieves the desired split.
b. We need to show that the Coulomb potential $V(x):=\frac{1}{|x|}, x \in \mathbb{R}^{3} \backslash\{0\}$ is in $L^{2}+L^{\infty}$. As above, we work with the level sets

$$
\begin{equation*}
\chi_{L}:=\left\{x \in \mathbb{R}^{3}:|V(x)| \leq L\right\}, \quad L>0 \tag{5}
\end{equation*}
$$

Setting $L=1$, we split

$$
V=V_{\leq 1}+V_{>1}, \quad V_{\leq 1}(x):=\left\{\begin{array}{l}
V(x) \text { if } x \in \chi_{1} \tag{6}\\
0 \quad \text { else }
\end{array} \quad, \quad V_{>1}:=\left\{\begin{array}{l}
0 \text { if } x \in \chi_{1} \\
V(x) \text { else }
\end{array}\right.\right.
$$

Clearly, $V_{\leq 1} \in L^{\infty}$ with $\left\|V_{\leq 1}\right\|_{L^{\infty}}=1$. Further, the pole of $x \mapsto\left|V_{>1}(x)\right|^{2}$ at $x=0$ is of order $2<3$, so $V_{>1} \in L^{2}$. More precisely, using spherical coordinates,

$$
\begin{equation*}
\left\|V_{>1}\right\|_{L^{2}}^{2}=\int_{\mathbb{R} \backslash \chi_{L}}|V(x)|^{2} \mathrm{~d} x=\int_{0}^{1} \frac{1}{r^{2}} 4 \pi r^{2} \mathrm{~d} r=4 \pi \tag{7}
\end{equation*}
$$

Thus, $V=V_{\leq 1}+V_{>1}$ is a suitable split to show $V \in L^{2}+L^{\infty}$.

Problem 3: Sobolev inequalities ($5+5$ points)

a. Our goal is to find the exponent $q=q(n, p)$, for which the Sobolev inequality can hold:

$$
\begin{equation*}
\|f\|_{L^{q}} \leq C_{n, p, q}\|\nabla f\|_{L^{p}} \tag{8}
\end{equation*}
$$

while using a rescaling argument via $f_{\lambda}(x)=f(\lambda x), \lambda>0$. The rescaling argument bases on the fact that (8) has to hold for any f_{λ} in place of f. That is,

$$
\begin{equation*}
\left\|f_{\lambda}\right\|_{L^{q}} \leq C_{n, p, q}\left\|\nabla f_{\lambda}\right\|_{L^{p}} \tag{9}
\end{equation*}
$$

has to hold. We evaluate the norm on the left-hand side, using a substitution $y=\lambda x$

$$
\begin{equation*}
\left\|f_{\lambda}\right\|_{L^{q}}=\left(\int_{\mathbb{R}^{n}}|f(\lambda x)|^{q} \mathrm{~d} x\right)^{\frac{1}{q}}=\left(\int_{\mathbb{R}^{n}}|f(y)|^{q} \lambda^{-n} \mathrm{~d} y\right)^{\frac{1}{q}}=\lambda^{-\frac{n}{q}}\|f\|_{L^{q}} \tag{10}
\end{equation*}
$$

For $\left\|\nabla f_{\lambda}\right\|_{L^{p}}$, we make use of the chain rule with $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, g(x):=\lambda x$, whose Jacobian is $D g(x)=\lambda \mathrm{id}_{n \times n}$:

$$
\begin{equation*}
\nabla f_{\lambda}(x)=\nabla(f \circ g)(x)=D g(x) \cdot(\nabla f)(g(x))=\lambda(\nabla f)(\lambda x) \tag{11}
\end{equation*}
$$

Thus, substituting $y=\lambda x$ yields

$$
\begin{equation*}
\left\|\nabla f_{\lambda}\right\|_{L^{p}}=\left(\int_{\mathbb{R}^{n}}|\lambda(\nabla f)(\lambda x)|^{p} \mathrm{~d} x\right)^{\frac{1}{p}}=\left(\int_{\mathbb{R}^{n}}|\nabla f(y)|^{p} \lambda^{p-n} \mathrm{~d} y\right)^{\frac{1}{p}}=\lambda^{1-\frac{n}{p}}\|\nabla f\|_{L^{p}} \tag{12}
\end{equation*}
$$

As (8) is valid, (9) can only hold for all $\lambda>0$ if

$$
\begin{equation*}
\lambda^{1-\frac{n}{p}}=\lambda^{-\frac{n}{q}} \quad \Leftrightarrow \quad 1-\frac{n}{p}=-\frac{n}{q} \quad \Leftrightarrow \quad \frac{1}{q}=\frac{1}{p}-\frac{1}{n} \quad \Leftrightarrow \quad q=\frac{p n}{n-p} \tag{13}
\end{equation*}
$$

which is the condition on q, we were looking for. Note that one commonly calls q the Sobolev conjugate of (n, p).
b. Here, we wish to show that the Sobolev embedding $H^{m}\left(\mathbb{R}^{n}\right) \subset L^{\infty}\left(\mathbb{R}^{n}\right)$ is true for $m>\frac{n}{2}$. This requires proving

$$
\begin{equation*}
\|u\|_{L^{\infty}} \leq C_{m, n}\|u\|_{H^{m}} \tag{14}
\end{equation*}
$$

for any $u \in H^{m}\left(\mathbb{R}^{n}\right)$ and a suitable $C_{m, n}>0$ uniform in u. The Sobolev norm is conveniently expressed ${ }^{2}$ using the Fourier transform

$$
\begin{equation*}
\hat{u}(k):=(2 \pi)^{-\frac{n}{2}} \int_{\mathbb{R}^{n}} u(x) e^{-i k x} \mathrm{~d} x \quad \Leftrightarrow \quad u(x):=(2 \pi)^{-\frac{n}{2}} \int_{\mathbb{R}^{n}} u(k) e^{i k x} \mathrm{~d} k \tag{15}
\end{equation*}
$$

and Plancherel's theorem $\|u\|_{L^{2}}=\|\hat{u}\|_{L^{2}}$:

$$
\begin{equation*}
\|u\|_{H^{m}}=\left(\sum_{|\alpha|<m}\left\|D^{\alpha} u\right\|_{L^{2}}^{2}\right)^{\frac{1}{2}}=\left(\sum_{|\alpha|<m}\left\|k^{\alpha} \hat{u}\right\|_{L^{2}}^{2}\right)^{\frac{1}{2}} \tag{16}
\end{equation*}
$$

The L^{∞}-norm is bounded by

$$
\begin{equation*}
\|u\|_{L^{\infty}}=\underset{x \in \mathbb{R}^{n}}{\operatorname{ess} \sup }|u(x)| \leq(2 \pi)^{-\frac{n}{2}} \int_{\mathbb{R}^{n}}|\hat{u}(x)| \mathrm{d} x=(2 \pi)^{-\frac{n}{2}}\|\hat{u}\|_{L^{1}} . \tag{17}
\end{equation*}
$$

Now, observe that for $m>\frac{n}{2}$, the function

$$
\begin{equation*}
f(k):=\frac{1}{1+k_{1}^{m}+\ldots+k_{n}^{m}} \tag{18}
\end{equation*}
$$

decays at $|k| \rightarrow \infty$ faster than $|k|^{-\frac{n}{2}}$, so $f \in L^{2}\left(\mathbb{R}^{n}\right)$ with $\|f\|_{L^{2}}=: c_{m, n}$. Thus, we can apply Hölder's inequality as

$$
\begin{align*}
\|\hat{u}\|_{L^{1}} & =\left\|f \frac{1}{f} \hat{u}\right\|_{L^{1}} \leq\|f\|_{L^{2}}\left\|\frac{1}{f} \hat{u}\right\|_{L^{2}} \leq c_{m, n}\left(\|\hat{u}\|_{L^{2}}^{2}+\left\|k_{1}^{m} \hat{u}\right\|_{L^{2}}^{2}+\ldots+\left\|k_{n}^{m} \hat{u}\right\|_{L^{2}}^{2}\right)^{\frac{1}{2}} \\
& \leq c_{m, n}\|u\|_{H^{m}} \tag{19}
\end{align*}
$$

[^1]Combining with (17), this yields the desired Sobolev bound (14).
Note that sometimes, one uses the different convention $\|u\|_{H^{m}}:=\left\|\langle k\rangle^{m} \hat{u}\right\|_{L^{2}}$ with the Japanese symbol $\langle k\rangle:=\sqrt{1+|k|^{2}}$. The proof is then analogous with $f(k):=$ $\langle k\rangle^{-m}$.

Problem 4: On the Existence Proof for SCUGs ($5+5$ points)

Let $A: D \subset \mathcal{H} \rightarrow \mathcal{H}$ be a self-adjoint operator in a Hilbert space \mathcal{H}.
In the lecture we defined
a. Recall that $A: D \subset \mathcal{H} \rightarrow \mathcal{H}$ is self-adjoint, $B_{m}:=\operatorname{im}(A+i m)^{-1}, m \in \mathbb{Z}, A_{m}:=$ $B_{m} A B_{-m}$ and

$$
\begin{equation*}
U_{m}(t):=e^{-i A_{m} t}:=\sum_{k \in \mathbb{N}} \frac{1}{k!}\left(-i t A_{m}\right)^{k} . \tag{20}
\end{equation*}
$$

We have to show that $U_{m}(t)$ is a strongly continuous unitary group (SCUG) and that $U(t):=\mathrm{s}-\lim _{m \rightarrow \infty} U_{m}(t)$ exists. Checking that $U_{m}(t)$ is a SCUG amounts to verifying the three axioms:

- First, $U_{m}(t)$ is unitary: It is easy to see that A_{m} is bounded since $B_{ \pm m}$ are bounded and

$$
\begin{equation*}
B_{m} A=B_{m}(A+i m-i m)=i m-i m(A+i m)^{-1} i m \tag{21}
\end{equation*}
$$

is also bounded. Further, it is easy to check that $B_{m}^{*}=B_{-m}$, so A_{m} is selfadjoint. Now, $U_{m}(t)^{*}=\sum_{k} \frac{1}{k!}\left(i t A_{m}^{*}\right)^{k}=\sum_{k} \frac{1}{k!}\left(i t A_{m}\right)^{k}$, which indeed agrees with $U_{m}(t)^{-1}$, as by the Baker-Campbell-Hausdorff (BCH) formula,

$$
\begin{equation*}
U_{m}(t) U_{m}(t)^{*}=e^{-i t A_{m}} e^{i t A_{m}}=e^{-i t A_{m}+i t A_{m}}=e^{0}=1 \tag{22}
\end{equation*}
$$

- $U_{m}(t+s)=e^{-i(t+s) A_{m}}=e^{-i t A_{m}} e^{-i s A_{m}}=U_{m}(t) U_{m}(s)$ due to BCH.
- Finally, we have strong continuity, as for $\varphi \in \mathcal{H}$:

$$
\begin{equation*}
\lim _{t \rightarrow 0}\left\|U_{m}(t) \varphi-\varphi\right\|=\lim _{t \rightarrow 0}\left\|\sum_{k=1}^{\infty} \frac{1}{k!}\left(-i t A_{m}\right)^{k} \varphi\right\| \leq \lim _{t \rightarrow 0} \sum_{k=1}^{\infty} \frac{|t|^{k}}{k!}\left\|A_{m}\right\|^{k}\|\varphi\|=0 . \tag{23}
\end{equation*}
$$

Next, we show that $U(t) \varphi:=\lim _{m \rightarrow \infty} U_{m}(t) \varphi$ exists for all $\varphi \in D, t \in \mathbb{R}$. By completeness of \mathcal{H}, this is true if we can show that $\left(U_{m}(t) \varphi\right)_{m \in \mathbb{N}}$ is a Cauchy sequence.

To do so, we use the fundamental theorem of calculus, as well as the fact that A_{n}, A_{m} commute with $U_{m}(t)$ (which can easily be checked by explicit computation):

$$
\begin{align*}
U_{n}(t) \varphi-U_{m}(t) \varphi & =\int_{0}^{t} \frac{\mathrm{~d}}{\mathrm{~d} s}\left(U_{n}(s) U_{m}(t-s)\right) \varphi \mathrm{d} s=i \int_{0}^{t} U_{n}(s)\left(A_{m}-A_{n}\right) U_{m}(t-s) \varphi \mathrm{d} s \\
& =i \int_{0}^{t} U_{n}(s) U_{m}(t-s)\left(A_{m}-A_{n}\right) \varphi \mathrm{d} s \tag{24}
\end{align*}
$$

Thus, using $\left\|U_{n}(t)\right\|=1$,

$$
\begin{align*}
\left\|U_{n}(t) \varphi-U_{m}(t) \varphi\right\| & \leq|i| \int_{0}^{t}\left\|U_{n}(t)\right\|\left\|U_{m}(t-s)\right\|\left\|A_{m} \varphi-A_{n} \varphi\right\| \mathrm{d} s \tag{25}\\
& =|t|\left\|A_{m} \varphi-A_{n} \varphi\right\|
\end{align*}
$$

Now, since $\left(A_{n} \varphi\right)_{n \in \mathbb{N}}$ is a Cauchy sequence, following (25), so is $\left(U_{m}(t) \varphi\right)_{m \in \mathbb{N}}$.
The statement can now easily be generalized from $\varphi \in D$ to $\varphi \in \mathcal{H}$: We approximate $\varphi \in \mathcal{H}$ by a sequence $\left(\varphi_{k}\right)_{k \in \mathbb{N}} \subset D$ in order to show that $\left(U_{m}(t) \varphi\right)_{m \in \mathbb{N}}$ is a Cauchy sequence:
$\left\|U_{m}(t) \varphi-U_{n}(t) \varphi\right\| \leq\left\|U_{m}(t) \varphi-U_{m}(t) \varphi_{k}\right\|+\left\|U_{m}(t) \varphi_{k}-U_{n}(t) \varphi_{k}\right\|+\left\|U_{n}(t) \varphi_{k}-U_{n}(t) \varphi\right\|$.
All three terms can be made arbitrarily small by choosing k large enough. Therefore, $\left(U_{m}(t) \varphi\right)_{m \in \mathbb{N}}$ is indeed a Cauchy sequence.
b. We have to show that $U(t)$ is a SCUG and its generator is A. First, we verify the axioms of a SCUG:

- $U(t)$ is unitary: First, observe that $\forall \psi, \varphi \in \mathcal{H}$,

$$
\begin{equation*}
\langle\psi, U(t) \varphi\rangle=\lim _{m \rightarrow \infty}\left\langle\psi, U_{m}(t) \varphi\right\rangle=\lim _{m \rightarrow \infty}\left\langle U_{m}(t)^{*} \psi, \varphi\right\rangle \tag{27}
\end{equation*}
$$

so $U(t)^{*}=\lim _{m \rightarrow \infty} U_{m}(t)^{*}$. Now, by unitarity of $U_{m}(t)$ and the fact that the limit of products is the product of limits (if it exists):

$$
\begin{equation*}
1=\lim _{m \rightarrow \infty} U_{m}(t)^{*} U_{m}(t)=U(t)^{*} U(t) \tag{28}
\end{equation*}
$$

so $U(t)^{*}$ is indeed $U(t)^{-1}$.

- $U(t+s)=\mathrm{s}-\lim _{m \rightarrow \infty} U_{m}(t+s)=\mathrm{s}-\lim _{m \rightarrow \infty} U_{m}(t) U_{m}(s)=U(t) U(s)$.
- Strong continuity: For any $m \geq 1$, it holds true that

$$
\begin{equation*}
\|U(t) \varphi-\varphi\| \leq\left\|U(t) \varphi-U_{m}(t) \varphi\right\|+\left\|U_{m}(t) \varphi-\varphi\right\| \tag{29}
\end{equation*}
$$

Now, for any given $\varepsilon>0$, we can achieve $\left\|U(t) \varphi-U_{m}(t) \varphi\right\|<\frac{\varepsilon}{2}$ for m large enough, and $\left\|U_{m}(t) \varphi-\varphi\right\|<\frac{\varepsilon}{2}$ for t small enough. So $\|U(t) \varphi-\varphi\|$ gets arbitrarily small as $t \rightarrow 0$, and $U(t) \varphi \rightarrow \varphi$.

Finally, A being a generator of $U(t)$ means that $A \varphi=\lim _{t \rightarrow 0} i \frac{U(t) \varphi-\varphi}{t}$ for any $\varphi \in D$. Now, by the fundamental theorem of calculus and since A_{m} generates $U_{m}(t)$,

$$
\begin{equation*}
i \frac{U(t) \varphi-\varphi}{t}=\lim _{m \rightarrow \infty} i \frac{U_{m}(t) \varphi-\varphi}{t}=\lim _{m \rightarrow \infty} \frac{1}{t} \int_{0}^{t} U_{m}(s) A_{m} \varphi \mathrm{~d} s \tag{30}
\end{equation*}
$$

We now show that the right-hand side amounts to $\frac{1}{t} \int_{0}^{t} U(s) A \varphi \mathrm{~d} s$, which converges to $A \varphi$ as $t \rightarrow \infty$, and would thus finish the proof.

$$
\begin{align*}
& \left\|\lim _{m \rightarrow \infty} \frac{1}{t} \int_{0}^{t} U_{m}(s) A_{m} \varphi \mathrm{~d} s-\frac{1}{t} \int_{0}^{t} U(s) A \varphi \mathrm{~d} s\right\| \\
\leq & \frac{1}{t} \int_{0}^{t} \lim _{m \rightarrow \infty}\left\|U_{m}(s) A_{m} \varphi-U(s) A \varphi\right\| \mathrm{d} s \tag{31}\\
\leq & \frac{1}{t} \int_{0}^{t} \lim _{m \rightarrow \infty}\left(\left\|A_{m} \varphi-A \varphi\right\|+\left\|U_{m}(s) A \varphi-U(s) A \varphi\right\|\right) \mathrm{d} s=0
\end{align*}
$$

as the term in the bracket vanishes as $m \rightarrow \infty$. Here, we were able to exchange integral and limit because of the dominated convergence theorem, which holds since

$$
\begin{align*}
& \left\|A_{m} \varphi-A \varphi\right\|+\left\|U_{m}(s) A \varphi-U(s) A \varphi\right\| \\
\leq & \left\|A_{m} \varphi-A \varphi\right\|+\left(\left\|U_{m}(s)\right\|+\|U(s)\|\right)\|A \varphi\| \tag{32}\\
= & \left\|A_{m} \varphi-A \varphi\right\|+2\|A \varphi\|
\end{align*}
$$

is uniformly bounded in m. This finishes the proof.

Problem 5: Resolvent of the Laplacian (10 points)

We have to show that for $H_{0}=-\Delta, \varphi \in L^{2}\left(\mathbb{R}^{3}\right)$ and $\kappa>0$, we have

$$
\begin{equation*}
\left(\left(H_{0}+\kappa^{2}\right)^{-1} \varphi\right)(x)=\frac{1}{4 \pi} \int_{\mathbb{R}^{3}} \frac{e^{-\kappa|x-y|}}{|x-y|} \varphi(y) \mathrm{d} y \tag{33}
\end{equation*}
$$

The action of $\left(H_{0}+\kappa^{2}\right)^{-1}$ is best described in Fourier space, where it amounts to a multiplication of $\hat{\varphi}(k)$ by $f(k):=\frac{1}{|k|^{2}+\kappa^{2}}$. Thus, by the convolution theorem,

$$
\begin{equation*}
\left(\left(H_{0}+\kappa^{2}\right)^{-1} \varphi\right)(x)=(f \hat{\varphi})^{\vee}(x)=(2 \pi)^{-\frac{3}{2}}(\check{f} * \varphi)(x)=(2 \pi)^{-\frac{3}{2}} \int_{\mathbb{R}^{n}} \check{f}(x-y) \varphi(y) \mathrm{d} y . \tag{34}
\end{equation*}
$$

Thus, it remains to show that $(2 \pi)^{-\frac{3}{2}} \check{f}(x)=\frac{e^{-\kappa|x|}}{4 \pi|x|}$ in order to finish the proof. This is done by evaluating the Fourier transform in spherical coordinates, using the substitution $y=\cos \theta$:

$$
\begin{align*}
& (2 \pi)^{-\frac{3}{2}} \check{f}(x)=(2 \pi)^{-3} \int_{\mathbb{R}^{3}} f(k) e^{i k x} \mathrm{~d} k=(2 \pi)^{-3} \int_{0}^{\infty} \int_{0}^{\pi} \frac{e^{i r|x| \cos \theta}}{r^{2}+\kappa^{2}} 2 \pi r^{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} r \\
= & (2 \pi)^{-2} \int_{0}^{\infty} \int_{-1}^{1} \frac{e^{i r|x| y}}{r^{2}+\kappa^{2}} r^{2} \mathrm{~d} y \mathrm{~d} r=(2 \pi)^{-2} \int_{0}^{\infty} \frac{e^{i r|x|}-e^{-i r|x|}}{i|x|\left(r^{2}+\kappa^{2}\right)} r \mathrm{~d} r \tag{35}\\
= & (2 \pi)^{-2} \Im \int_{0}^{\infty} \frac{2 r e^{i r|x|}}{|x|\left(r^{2}+\kappa^{2}\right)} \mathrm{d} r=:(2 \pi)^{-2} \Im \int_{0}^{\infty} g(r) \mathrm{d} r .
\end{align*}
$$

Figure 1: The integration contour around the pole at $i \kappa$.
We can now interpret $g(r)$ as a complex function $g: \mathbb{C} \rightarrow \mathbb{C}$, which has two poles at $r= \pm i \kappa$. This allows us to exploit the residue theorem: Let $R>\kappa$ and define the integration contour $\gamma_{R} \subset \mathbb{C}$, which runs from $-R$ to R along the real axis and then closes in a semi-circle around 0 with radius R, see Figure 1. Then, by the residue theorem,

$$
\begin{align*}
& \oint_{\gamma_{R}} g(z) \mathrm{d} z=2 \pi i \operatorname{Res}(g, i \kappa)=2 \pi i \lim _{z \rightarrow i i}(z-i \kappa) g(z) \\
= & 2 \pi i \lim _{z \rightarrow i \kappa} \frac{2 z e^{i z|x|}}{|x|(z+i \kappa)}=2 \pi i \frac{e^{-\kappa|x|}}{|x|} . \tag{36}
\end{align*}
$$

On the other hand, as $R \rightarrow \infty$, we get

$$
\begin{equation*}
\lim _{R \rightarrow \infty} \oint_{\gamma_{R}} g(z) \mathrm{d} z=\int_{-\infty}^{\infty} g(r) \mathrm{d} r+\lim _{R \rightarrow \infty} \int_{0}^{\pi} g\left(R e^{i \theta}\right) R i e^{i \theta} \mathrm{~d} \theta \tag{37}
\end{equation*}
$$

Now,

$$
\begin{equation*}
\left|g\left(R e^{i \theta}\right)\right| \leq \frac{2 R}{|x|\left(R^{2}-\kappa^{2}\right)} \rightarrow 0 \quad \text { as } R \rightarrow \infty \tag{38}
\end{equation*}
$$

so the second integral vanishes due to Jordan's lemma and we are left with

$$
\begin{equation*}
\int_{-\infty}^{\infty} g(r) \mathrm{d} r=2 \pi i \frac{e^{-\kappa|x|}}{|x|} \tag{39}
\end{equation*}
$$

To apply this result to (35), we still need to extend the integral $\int_{0}^{\infty} g(r) \mathrm{d} r$ from (35) to the real line, which requires adding

$$
\begin{equation*}
\int_{-\infty}^{0} g(r) \mathrm{d} r=\int_{0}^{\infty} g(-r) \mathrm{d} r=\int_{0}^{\infty} g(r) \mathrm{d} r \tag{40}
\end{equation*}
$$

We conclude:

$$
\begin{equation*}
2(2 \pi)^{-\frac{3}{2}} \check{f}(x)=(2 \pi)^{-2} \Im \int_{-\infty}^{\infty} g(r) \mathrm{d} r=2 \frac{e^{-\kappa|x|}}{4 \pi|x|} \tag{41}
\end{equation*}
$$

which renders the desired result $(2 \pi)^{-\frac{3}{2}} \check{f}(x)=\frac{e^{-\kappa|x|}}{4 \pi|x|}$.

[^0]: ${ }^{1}$ Strictly speaking, since V_{2} is only defined up to modifications on a null set, also χ_{L} is defined up to modifications on a null set. So $\chi_{L}=\left[\chi_{L}\right]$ is actually an equivalence class, where two representatives, say $\chi_{L, 1}$ and $\chi_{L, 2}$, are allowed to differ by a null set. However, for any integrable u, we have $\int_{\chi_{L, 1}} u=\int_{\chi_{L, 2}} u$ since adding or removing a null set to/from the domain does not change the integral. So the value of integrals like $\int_{\chi_{L}} u$ is unique.

[^1]: ${ }^{2}$ Here, we use the standard multi-index notation $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \alpha_{j} \in \mathbb{N}$, with $|\alpha|=\sum_{j=1}^{n} \alpha_{j}, D^{\alpha}=$ $\partial_{1}^{\alpha_{1}} \ldots \partial_{n}^{\alpha_{n}}, k^{\alpha}=k_{1}^{\alpha_{1}} \ldots . \cdot k_{n}^{\alpha_{n}}$.

