Metodi Matematici della Meccanica Quantistica

Assignment 3

To be handed in on Wednesday, November 8, 2023, before 10:30 via email (scanned or $\mathrm{EAT}_{\mathrm{E}}$) to sascha.lill@unimi.it or on paper at the beginning of the lecture.

Problem 1: Proof of the Weyl criterion (10 points)

Let X be a Banach space, $A: D \subset X \rightarrow X$ an operator and $\lambda \in \mathbb{C}$.
Prove that: If there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in D with $\left\|x_{n}\right\|=1$ for all $n \in \mathbb{N}$, and $\left\|(A-\lambda) x_{n}\right\| \rightarrow 0(n \rightarrow \infty)$, then $\lambda \in \sigma(A)$.

Problem 2: Coulomb potential ($5+5$ points)

a. Suppose that $V \in L^{2}+L^{\infty}\left(\mathbb{R}^{3}\right)$.

Show that the L^{2}-part can be made arbitrarily small, i. e., for every $\varepsilon>0$ there exist $V_{2}^{\varepsilon} \in L^{2}\left(\mathbb{R}^{3}\right)$ and $V_{\infty}^{\varepsilon} \in L^{\infty}\left(\mathbb{R}^{3}\right)$ such that $V=V_{2}^{\varepsilon}+V_{\infty}^{\varepsilon}$ and $\left\|V_{2}^{\varepsilon}\right\|_{2}<\varepsilon$.
b. Show that the Coulomb potential, defined by $V(x):=\frac{1}{|x|}$ for $x \neq 0$ (and $\left.V(0):=0\right)$, is in $L^{2}+L^{\infty}\left(\mathbb{R}^{3}\right)$.

Problem 3: Sobolev inequalities ($5+5$ points)

a. Assume that for functions defined on \mathbb{R}^{n} a Sobolev inequality of the following form holds: There exists a constant $C_{n, p, q}$ such that for all f we have

$$
\|f\|_{L^{q}} \leq C_{n, p, q}\|\nabla f\|_{L^{p}}
$$

Given n and p, consider a rescaling $f_{\lambda}(x)=f(\lambda x)$ by a parameter $\lambda>0$ to determine the only possible exponent q for which this can hold.
b. Let $u \in H^{m}\left(\mathbb{R}^{n}\right)$ with $m>n / 2$ (the Sobolev space such that u has m weak derivatives in $\left.L^{2}\right)$. Use the Fourier transform to show that $u \in L^{\infty}\left(\mathbb{R}^{n}\right)$ and

$$
\begin{equation*}
\|u\|_{L^{\infty}} \leq C_{m, n}\|u\|_{H^{m}}, \tag{1}
\end{equation*}
$$

where the constant $C_{m, n}$ does not depend on u.

Problem 4: On the Existence Proof for SCUGs (5+5 points)

Let $A: D \subset \mathcal{H} \rightarrow \mathcal{H}$ be a self-adjoint operator in a Hilbert space \mathcal{H}.
In the lecture we defined $B_{m}:=i m(A+i m)^{-1}(m \in \mathbb{Z}), A_{m}:=B_{m} A B_{-m}$, and

$$
U_{m}(t):=e^{-i A_{m} t}:=\sum_{k \in \mathbb{N}} \frac{1}{k!}\left(-i t A_{m}\right)^{k} .
$$

a. Show that $U_{m}(t)$ is a SCUG for every $m \in \mathbb{N}$. Then show that the limit of $U_{m}(t) \varphi$ $(m \rightarrow \infty)$ exists for all $\varphi \in D$ and all $t \in \mathbb{R}$. Why does $U(t):=\mathrm{s}-\lim _{m \rightarrow \infty} U_{m}(t)$ exist?
b. Show that $U(t)$ is a SCUG. Then show that its generator is A.

Problem 5: Resolvent of the Laplacian (10 points)

Let $H_{0}=-\Delta\left(\right.$ in $L^{2}\left(\mathbb{R}^{3}\right)$ with domain $H^{2}\left(\mathbb{R}^{3}\right)$). Show that for $\varphi \in L^{2}\left(\mathbb{R}^{3}\right)$ and $\kappa>0$

$$
\left(\left(H_{0}+\kappa^{2}\right)^{-1} \varphi\right)(x)=\frac{1}{4 \pi} \int_{\mathbb{R}^{3}} \frac{e^{-\kappa|x-y|}}{|x-y|} \varphi(y) \mathrm{d} y .
$$

Hints: Recall that a multiplication operator under Fourier transform turns into convolution with the inversely transformed function \check{f} (why?):

$$
\left(\mathcal{F}^{-1} T_{f} \mathcal{F} \varphi\right)(x)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} \check{f}(x-y) \varphi(y) \mathrm{d} y
$$

Then use spherical coordinates and the residue theorem of complex analysis (you can look it up) to calculate \check{f}.

Remark: The function $\frac{e^{-k|x|}}{4 \pi|x|}$ is called Yukawa potential or free Green's function. In electrodynamics or partial differential equations, one considers linear differential operators L and tries to find a so called Green's function G such that $(L G)(x)=\delta(x)$ (Dirac delta distribution). So you can think of a Green's function G as the representation of a resolvent by an integral operator.

