Metodi Matematici della Meccanica Quantistica

Prof. Dr. Niels Benedikter

Dr. Sascha Lill

Assignment 3

To be handed in on Wednesday, November 8, 2023, before 10:30 via email (scanned or LATEX) to sascha.lill@unimi.it or on paper at the beginning of the lecture.

Problem 1: Proof of the Weyl criterion (10 points)

Let X be a Banach space, $A:D\subset X\to X$ an operator and $\lambda\in\mathbb{C}$.

Prove that: If there exists a sequence $(x_n)_{n\in\mathbb{N}}$ in D with $||x_n|| = 1$ for all $n \in \mathbb{N}$, and $||(A - \lambda)x_n|| \to 0$ $(n \to \infty)$, then $\lambda \in \sigma(A)$.

Problem 2: Coulomb potential (5+5 points)

- **a.** Suppose that $V \in L^2 + L^{\infty}(\mathbb{R}^3)$. Show that the L^2 -part can be made arbitrarily small, i. e., for every $\varepsilon > 0$ there exist $V_2^{\varepsilon} \in L^2(\mathbb{R}^3)$ and $V_{\infty}^{\varepsilon} \in L^{\infty}(\mathbb{R}^3)$ such that $V = V_2^{\varepsilon} + V_{\infty}^{\varepsilon}$ and $\|V_2^{\varepsilon}\|_2 < \varepsilon$.
- **b.** Show that the Coulomb potential, defined by $V(x) := \frac{1}{|x|}$ for $x \neq 0$ (and V(0) := 0), is in $L^2 + L^{\infty}(\mathbb{R}^3)$.

Problem 3: Sobolev inequalities (5+5 points)

a. Assume that for functions defined on \mathbb{R}^n a Sobolev inequality of the following form holds: There exists a constant $C_{n,p,q}$ such that for all f we have

$$||f||_{L^q} \le C_{n,p,q} ||\nabla f||_{L^p}$$
.

Given n and p, consider a rescaling $f_{\lambda}(x) = f(\lambda x)$ by a parameter $\lambda > 0$ to determine the only possible exponent q for which this can hold.

b. Let $u \in H^m(\mathbb{R}^n)$ with m > n/2 (the Sobolev space such that u has m weak derivatives in L^2). Use the Fourier transform to show that $u \in L^{\infty}(\mathbb{R}^n)$ and

$$||u||_{L^{\infty}} \le C_{m,n} ||u||_{H^m} , \qquad (1)$$

where the constant $C_{m,n}$ does not depend on u.

Problem 4: On the Existence Proof for SCUGs (5+5 points)

Let $A:D\subset\mathcal{H}\to\mathcal{H}$ be a self-adjoint operator in a Hilbert space \mathcal{H} .

In the lecture we defined $B_m := im(A+im)^{-1}$ $(m \in \mathbb{Z}), A_m := B_m A B_{-m}$, and

$$U_m(t) := e^{-iA_m t} := \sum_{k \in \mathbb{N}} \frac{1}{k!} (-itA_m)^k$$
.

- **a.** Show that $U_m(t)$ is a SCUG for every $m \in \mathbb{N}$. Then show that the limit of $U_m(t)\varphi$ $(m \to \infty)$ exists for all $\varphi \in D$ and all $t \in \mathbb{R}$. Why does $U(t) := \text{s-lim}_{m \to \infty} U_m(t)$ exist?
- **b.** Show that U(t) is a SCUG. Then show that its generator is A.

Problem 5: Resolvent of the Laplacian (10 points)

Let $H_0 = -\Delta$ (in $L^2(\mathbb{R}^3)$ with domain $H^2(\mathbb{R}^3)$). Show that for $\varphi \in L^2(\mathbb{R}^3)$ and $\kappa > 0$

$$\left(\left(H_0 + \kappa^2\right)^{-1} \varphi\right)(x) = \frac{1}{4\pi} \int_{\mathbb{R}^3} \frac{e^{-\kappa|x-y|}}{|x-y|} \varphi(y) dy.$$

Hints: Recall that a multiplication operator under Fourier transform turns into convolution with the inversely transformed function \check{f} (why?):

$$\left(\mathcal{F}^{-1}T_f\mathcal{F}\varphi\right)(x) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} \check{f}(x-y)\varphi(y) dy.$$

Then use spherical coordinates and the residue theorem of complex analysis (you can look it up) to calculate \check{f} .

Remark: The function $\frac{e^{-\kappa|x|}}{4\pi|x|}$ is called Yukawa potential or free Green's function. In electrodynamics or partial differential equations, one considers linear differential operators L and tries to find a so called Green's function G such that $(LG)(x) = \delta(x)$ (Dirac delta distribution). So you can think of a Green's function G as the representation of a resolvent by an integral operator.