Metodi Matematici della Meccanica Quantistica

Solutions for Assignment 2

Discussed on Friday, October 6, 2023
In case of questions, contact sascha.lill@unimi.it .

Problem 1: Operator Adjoints ($5+5$ points)
a. To show: $A \subset B \Rightarrow B^{*} \subset A^{*}$.

Let $y \in D\left(B^{*}\right)$. By definition of B^{*} there exists $y^{\prime}=B^{*} y$ such that

$$
\langle y, B x\rangle=\left\langle y^{\prime}, x\right\rangle \quad \text { for all } x \in D(B) .
$$

Since $D(A) \subset D(B)$, this is in particular true for all $x \in D(A)$. For $x \in D(A)$ we also have $B x=A x$. So

$$
\langle y, A x\rangle=\left\langle y^{\prime}, x\right\rangle \quad \text { for all } x \in D(A) .
$$

Thus $y \in D\left(A^{*}\right)$ and $y^{\prime}=A^{*} y$, as was to be shown.
b. To show: $A \subset B \subset A^{*}$.

Since $B=B^{*}$, by the previous exercise $A \subset B=B * \subset A^{*}$.

Problem 2: On Proposition 2.7 (4+2 points)

a. Just expand the squares from the norms:

$$
\begin{aligned}
& \|x+y\|^{2}-\|x-y\|^{2}-i\|x+i y\|^{2}+i\|x-i y\|^{2} \\
= & \langle x+y, x+y\rangle-\langle x-y, x-y\rangle-i\langle x+i y, x+i y\rangle+i\langle x-i y, x-i y\rangle \\
= & \|x\|^{2}+\langle x, y\rangle+\langle y, x\rangle+\|y\|^{2} \\
& -\|x\|^{2}+\langle x, y\rangle+\langle y, x\rangle-\|y\|^{2} \\
- & -i\|x\|^{2}+\langle x, y\rangle-\langle y, x\rangle-i\|y\|^{2} \\
+ & i\|x\|^{2}+\langle x, y\rangle-\langle y, x\rangle+i\|y\|^{2} \\
= & 4\langle x, y\rangle .
\end{aligned}
$$

b. To show: $\langle H u, u\rangle=\langle u, H u\rangle \forall u \in D(H)$ implies that H is symmetric.

We define the quadratic forms

$$
\begin{array}{ll}
\langle\cdot, \cdot\rangle_{1}: D(H) \times D(H) \rightarrow \mathbb{C}, & \langle u, v\rangle_{1}:=\langle H u, v\rangle, \\
\langle\cdot, \cdot\rangle_{2}: D(H) \times D(H) \rightarrow \mathbb{C}, & \langle u, v\rangle_{2}:=\langle u, H v\rangle .
\end{array}
$$

Since $\langle H u, u\rangle=\langle u, H u\rangle$, both induce the same seminorm ${ }^{1}$,

$$
\|u\|_{1}^{2}=\langle u, u\rangle_{1}=\langle H u, u\rangle=\langle u, H u\rangle=\langle u, u\rangle_{2}=\|u\|_{2}^{2} .
$$

The polarization identity holds by the same computation as before, implying

$$
\begin{aligned}
& \langle H u, v\rangle=\langle u, v\rangle_{1} \\
& =\frac{1}{4}\left(\|u+v\|_{1}^{2}-\|u-v\|_{1}^{2}-i\|u+i v\|_{1}^{2}+i\|u-i v\|_{1}^{2}\right) \\
& =\frac{1}{4}\left(\|u+v\|_{2}^{2}-\|u-v\|_{2}^{2}-i\|u+i v\|_{2}^{2}+i\|u-i v\|_{2}^{2}\right) \\
& =\langle u, v\rangle_{2}=\langle u, H v\rangle .
\end{aligned}
$$

Problem 3: Still on Proposition 2.7 (4 points)

To show: if $H \subset H^{*}$, then $\|\psi(t)-\varphi(t)\|=\|\psi(0)-\varphi(0)\| \forall t \in \mathbb{R}$.
Let $u(t):=\psi(t)-\varphi(t)$. By the product rule

$$
\begin{aligned}
& \frac{\partial}{\partial t}\|u(t)\|^{2}=\left\langle\frac{\partial}{\partial t} u(t), u(t)\right\rangle+\left\langle u(t), \frac{\partial}{\partial t} u(t)\right\rangle \\
& =\langle-i H u(t), u(t)\rangle+\langle u(t),-i H u(t)\rangle=i\langle u(t), H u(t)\rangle-i\langle u(t), H u(t)\rangle=0
\end{aligned}
$$

So $\|u(t)\|^{2}$ is constant.

Problem 4: Operator with trivial adjoint (3+4+3 points)

a. Since f has compact support, the sum is finite.
b. To show: $f \mapsto\langle g, A f\rangle$ is not continuous for $g \neq 0$.

Compute

$$
\left\langle g, A f_{k}\right\rangle=\left\langle f_{k}, \sum_{n=0}^{\infty} f_{k}(n) e_{n}\right\rangle=\sum_{n=0}^{\infty} f_{k}(n)\left\langle g, e_{n}\right\rangle .
$$

Since $g \neq 0$ and $\left(e_{n}\right)_{n}$ an ONB, there exists at least one $n_{0} \in \mathbb{N}$ such that $\left\langle g, e_{n_{0}}\right\rangle \neq 0$.

[^0]We construct a sequence $\left(f_{k}\right)_{k \in \mathbb{N}}$ such that

$$
\left\|f_{k}\right\|_{L^{2}} \rightarrow 0
$$

while

$$
f_{k}(n)=f_{0}(n) \quad \text { for all } n \in \mathbb{N}
$$

The latter implies that $\left\langle g, A f_{k}\right\rangle$ is constant with respect to k and non-zero. (It if was continuously depending on f_{k}, it would have to converge to zero instead.)

We take f_{k} as a smooth bump function with maximum $f_{k}\left(n_{0}\right)=1$ and supported in the interval $\left[n_{0}-\frac{1}{k}, n_{0}+\frac{1}{k}\right]$.
c. To show: $D\left(A^{*}\right)=\{0\}$.

Assume $D\left(A^{*}\right)$ contains any $g \neq 0$. Then there exists $g^{\prime}=A^{*} g$ with

$$
\left\langle g^{\prime}, f\right\rangle=\langle g, A f\rangle \quad \forall f \in D(A)
$$

Then $f \mapsto\left\langle g^{\prime}, f\right\rangle$ is continuous. Contradiction to previous exercise.

[^0]: ${ }^{1}$ Note that $\|\cdot\|_{1}$ is a norm if and only if $\operatorname{Ker}(H)=\{0\}$. Otherwise, we may have $\|u\|_{1}=0$ for $u \neq 0$, so it is only a seminorm. The same holds for $\|\cdot\|_{2}$.

