Metodi Matematici della Meccanica Quantistica

Solutions for Assignment 2

Discussed on Friday, October 6, 2023. In case of questions, contact sascha.lill@unimi.it .

Problem 1: Operator Adjoints (5+5 points)

a. To show: $A \subset B \Rightarrow B^* \subset A^*$.

Let $y \in D(B^*)$. By definition of B^* there exists $y' = B^*y$ such that

 $\langle y, Bx \rangle = \langle y', x \rangle$ for all $x \in D(B)$.

Since $D(A) \subset D(B)$, this is in particular true for all $x \in D(A)$. For $x \in D(A)$ we also have Bx = Ax. So

$$\langle y, Ax \rangle = \langle y', x \rangle$$
 for all $x \in D(A)$.

Thus $y \in D(A^*)$ and $y' = A^*y$, as was to be shown.

b. To show: $A \subset B \subset A^*$.

Since $B = B^*$, by the previous exercise $A \subset B = B^* \subset A^*$.

Problem 2: On Proposition 2.7 (4+2 points)

a. Just expand the squares from the norms:

$$\begin{split} \|x+y\|^2 - \|x-y\|^2 - i\|x+iy\|^2 + i\|x-iy\|^2 \\ &= \langle x+y, x+y \rangle - \langle x-y, x-y \rangle - i \langle x+iy, x+iy \rangle + i \langle x-iy, x-iy \rangle \\ &= \|x\|^2 + \langle x, y \rangle + \langle y, x \rangle + \|y\|^2 \\ &- \|x\|^2 + \langle x, y \rangle + \langle y, x \rangle - \|y\|^2 \\ &- i\|x\|^2 + \langle x, y \rangle - \langle y, x \rangle - i\|y\|^2 \\ &+ i\|x\|^2 + \langle x, y \rangle - \langle y, x \rangle + i\|y\|^2 \\ &= 4 \langle x, y \rangle \,. \end{split}$$

b. To show: $\langle Hu, u \rangle = \langle u, Hu \rangle \ \forall u \in D(H)$ implies that H is symmetric.

We define the quadratic forms

$$\begin{aligned} \langle \cdot, \cdot \rangle_1 &: D(H) \times D(H) \to \mathbb{C}, & \langle u, v \rangle_1 &:= \langle Hu, v \rangle , \\ \langle \cdot, \cdot \rangle_2 &: D(H) \times D(H) \to \mathbb{C}, & \langle u, v \rangle_2 &:= \langle u, Hv \rangle . \end{aligned}$$

Since $\langle Hu, u \rangle = \langle u, Hu \rangle$, both induce the same seminorm¹:

$$||u||_1^2 = \langle u, u \rangle_1 = \langle Hu, u \rangle = \langle u, Hu \rangle = \langle u, u \rangle_2 = ||u||_2^2.$$

The polarization identity holds by the same computation as before, implying

Problem 3: Still on Proposition 2.7 (4 points)

To show: if $H \subset H^*$, then $\|\psi(t) - \varphi(t)\| = \|\psi(0) - \varphi(0)\| \ \forall t \in \mathbb{R}$.

Let $u(t) := \psi(t) - \varphi(t)$. By the product rule

$$\begin{split} &\frac{\partial}{\partial t} \|u(t)\|^2 = \left\langle \frac{\partial}{\partial t} u(t), u(t) \right\rangle + \left\langle u(t), \frac{\partial}{\partial t} u(t) \right\rangle \\ &= \left\langle -iHu(t), u(t) \right\rangle + \left\langle u(t), -iHu(t) \right\rangle = i \left\langle u(t), Hu(t) \right\rangle - i \left\langle u(t), Hu(t) \right\rangle = 0 \;. \end{split}$$

So $||u(t)||^2$ is constant.

Problem 4: Operator with trivial adjoint (3+4+3 points)

- **a.** Since f has compact support, the sum is finite.
- **b.** To show: $f \mapsto \langle g, Af \rangle$ is not continuous for $g \neq 0$.

Compute

$$\langle g, Af_k \rangle = \langle f_k, \sum_{n=0}^{\infty} f_k(n)e_n \rangle = \sum_{n=0}^{\infty} f_k(n)\langle g, e_n \rangle .$$

Since $g \neq 0$ and $(e_n)_n$ an ONB, there exists at least one $n_0 \in \mathbb{N}$ such that $\langle g, e_{n_0} \rangle \neq 0$.

¹Note that $\|\cdot\|_1$ is a norm if and only if Ker $(H) = \{0\}$. Otherwise, we may have $\|u\|_1 = 0$ for $u \neq 0$, so it is only a seminorm. The same holds for $\|\cdot\|_2$.

We construct a sequence $(f_k)_{k\in\mathbb{N}}$ such that

$$\|f_k\|_{L^2} \to 0$$

while

$$f_k(n) = f_0(n)$$
 for all $n \in \mathbb{N}$.

The latter implies that $\langle g, Af_k \rangle$ is constant with respect to k and non-zero. (It if was continuously depending on f_k , it would have to converge to zero instead.)

We take f_k as a smooth bump function with maximum $f_k(n_0) = 1$ and supported in the interval $[n_0 - \frac{1}{k}, n_0 + \frac{1}{k}]$.

c. To show: $D(A^*) = \{0\}$.

Assume $D(A^*)$ contains any $g \neq 0$. Then there exists $g' = A^*g$ with

$$\langle g', f \rangle = \langle g, Af \rangle \qquad \forall f \in D(A) \;.$$

Then $f \mapsto \langle g', f \rangle$ is continuous. Contradiction to previous exercise.