Metodi Matematici della Meccanica Quantistica

Assignment 2 from October 13, 2023

To be handed in on Wednesday, October 18, 2023, before 10:30 via email (scanned or $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$) to sascha.lill@unimi.it or on paper at the beginning of the lecture.

Problem 1: Operator Adjoints ($5+5$ points)

a. Let \mathcal{H} be a Hilbert space and A, B densely defined operators in \mathcal{H}. Show that: If $A \subset B$, then $B^{*} \subset A^{*}$.
b. Let \mathcal{H} be a Hilbert space and A, B densely defined operators in \mathcal{H}.

Show that: If A is symmetric and B is a self-adjoint extension of A, then $A \subset B \subset A^{*}$

Problem 2: On Proposition 2.7 (4+2 points)
a. Let $\langle\cdot, \cdot\rangle$ be an inner product on a vector space V and $\|x\|:=\sqrt{\langle x, x\rangle}$ (for $x \in V$) be the norm it induces. Show the polarization identity

$$
\langle x, y\rangle=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}-i\|x+i y\|^{2}+i\|x-i y\|^{2}\right)
$$

for all $x, y \in V$.
Remark: This is very useful because it permits to recover the scalar product from the norm.
b. Show that $\langle H u, u\rangle=\langle u, H u\rangle$ for all $u \in D(H)$ implies that the operator H is symmetric.

Problem 3: Still on Proposition 2.7 (4 points)

Consider two solutions ψ and φ of the Schrödinger equation with initial data $\psi(0)$ and $\varphi(0)$, respectively.

Show that if $H \subset H^{*}$, then $\|\psi(t)-\varphi(t)\|=\|\psi(0)-\varphi(0)\|$ for all $t \in \mathbb{R}$.

Problem 4: Operator with trivial adjoint ($3+4+3$ points)

A countable family $\left(e_{n}\right)_{n \in \mathbb{N}}$ in a Hilbert space \mathcal{H} is called orthonormal basis or

Schauder basis if $\left\langle e_{n}, e_{k}\right\rangle=\delta_{n, k}$ and for all $x \in \mathcal{H}$ we have as a convergent infinite series

$$
\begin{equation*}
x=\sum_{n=0}^{\infty} e_{n}\left\langle e_{n}, x\right\rangle . \tag{1}
\end{equation*}
$$

(This is different from linear algebra where a basis uses only finite linear combinations. A basis that can represent any vector in terms of finite linear combinations is called Hamel basis but is not commonly used in Hilbert space theory. One reason is that, if X is an infinite-dimensional Banach space, then any Hamel basis of X is uncountable.)

Example: For $e_{n}(x)=\frac{1}{\sqrt{2 \pi}} e^{i n x}, n \in \mathbb{Z}$, in $\mathcal{H}=L^{2}((0,2 \pi))$, the series (1) is the ordinary Fourier series.

Now let $\mathcal{H}:=L^{2}(\mathbb{R})$ and $\left(e_{n}\right)_{n \in \mathbb{N}}$ an arbitrary orthonormal basis of \mathcal{H}. Define an operator $A: \mathcal{D} \subset \mathcal{H} \rightarrow \mathcal{H}$ by $\mathcal{D}:=C_{0}^{\infty}(\mathbb{R})$ and

$$
\begin{equation*}
A f:=\sum_{n=0}^{\infty} f(n) e_{n} \tag{2}
\end{equation*}
$$

a. Show that: The series in (2) converges.
b. Show that: For any $g \in \mathcal{H}, g \neq 0$, the mapping $f \mapsto\langle g, A f\rangle$ is not continuous as a function from $\left(\mathcal{D},\|\cdot\|_{\mathcal{H}}\right)$ to \mathbb{C}.
c. Show that the domain $D\left(A^{*}\right)$ is trivial, i. e., $D\left(A^{*}\right)=\{0\}$.

Problem 5: Orthogonal Complement (OPTIONAL - NO CORRECTION)

Let \mathcal{H} be a Hilbert space and $M \subset \mathcal{H}$ a subset. Prove the following facts:
a. The orthogonal complement M^{\perp} is a closed subspace.
b. $M \subset\left(M^{\perp}\right)^{\perp}$. If M is a subspace: $\left(M^{\perp}\right)^{\perp}=\bar{M}$.

You may use the fact that given a closed subspace $X \subset \mathcal{H}$, for every $x \in \mathcal{H}$ there exists a unique decomposition $x=x_{1}+x_{2}$ with $x_{1} \in X$ and $x_{2} \in X^{\perp}$.
c. $(\bar{M})^{\perp}=M^{\perp}$.

