Metodi Matematici della Meccanica Quantistica

Solutions for Assignment 1

Discussed on Friday, October 6, 2023. In case of questions, contact sascha.lill@unimi.it .

Problem 1: Banach Spaces and Bounded Operators (2+2+3+3 points)

a. We have to verify the three axioms of a norm:

- Homogeneity: $\|\lambda[f]\|_p = \left(\int |\lambda f(x)|^p \mathrm{d}x\right)^{1/p} = \left(|\lambda|^p \int |f(x)|^p \mathrm{d}x\right)^{1/p}$ = $|\lambda| \left(\int |f(x)|^p \mathrm{d}x\right)^{1/p} = \lambda \|[f]\|_p$
- Positive definiteness: Since $|f(x)| \ge 0$, we also have $\int |f(x)|^p dx \ge 0$ and thus $\|[f]\|_p \ge 0$. The case $\|[f]\|_p = 0$ only occurs if¹

$$\int |f(x)|^p dx = 0 \quad \Leftrightarrow \quad |f(x)|^p = 0 \text{ a.e.} \quad \Leftrightarrow \quad f(x) = 0 \text{ a.e.} \quad \Leftrightarrow \quad [f] = 0$$

• Triangle inequality: This proof is a bit more tricky. It uses Hölder's inequality

$$\|[fg]\|_1 \le \|[f]\|_p \|[g]\|_q,\tag{1}$$

which holds for any $[f] \in L^p(\mathbb{R}^d), [g] \in L^q(\mathbb{R}^d)$, where $1 = \frac{1}{p} + \frac{1}{q} \Leftrightarrow \frac{p}{q} = p - 1$ and [fg](x) := f(x)g(x) (a.e.) is the pointwise product. What we have to show is $\|[f] + [g]\|_p \le \|[f]\|_p + \|[g]\|_p$. For p > 1,

$$\begin{split} \|[f] + [g]\|_{p}^{p} &= \int |f(x) + g(x)|^{p} dx = \int |f(x) + g(x)| |f(x) + g(x)|^{p-1} dx \\ &\leq \int |f(x)| |f(x) + g(x)|^{p-1} dx + \int |g(x)| |f(x) + g(x)|^{p-1} dx \\ &\stackrel{(1)}{\leq} \left(\int |f(x)|^{p} dx \right)^{1/p} \left(\int |f(x) + g(x)|^{q(p-1)} dx \right)^{1/q} \\ &\quad + \left(\int |g(x)|^{p} dx \right)^{1/p} \left(\int |f(x) + g(x)|^{q(p-1)} dx \right)^{1/q} \\ &= \|[f]\|_{p} \|[f] + [g]\|_{p}^{p/q} + \|[g]\|_{p} \|[f] + [g]\|_{p}^{p/q} \\ &= \left(\|[f]\|_{p} + \|[g]\|_{p} \right) \|[f] + [g]\|_{p}^{p/q} . \end{split}$$

¹Recall that "a.e." is the abbreviation for "almost everywhere", meaning "for all $x \in \mathbb{R}^d \setminus \mathcal{N}$ where \mathcal{N} is some set of Lebesgue measure zero". Also recall that if a function f is zero almost everywhere, then [f] = [0] = 0, i.e., it is in the same equivalence class as the zero function and this equivalence class is the zero element of the vector space $L^p(\mathbb{R}^d)$.

We conclude, using p/q = p - 1,

$$\|[f] + [g]\|_p^{p-p/q} \le \|[f]\|_p + \|[g]\|_p \quad \Leftrightarrow \quad \|[f] + [g]\|_p \le \|[f]\|_p + \|[g]\|_p ,$$

which is what we wanted to show. In case p = 1, we simply have

$$\|[f] + [g]\|_1 = \int |f(x) + g(x)| dx \le \int |f(x)| dx + \int |g(x)| dx = \|[f]\|_1 + \|[g]\|_1.$$

- **b.** \tilde{X} being a Banach space means that every Cauchy sequence $(x_n)_{n=1}^{\infty} \subset \tilde{X}$ must converge to a limit $x \in \tilde{X}$. Now, any Cauchy sequence $(x_n)_{n=1}^{\infty} \subset \tilde{X}$ is also a Cauchy sequence in $X \supset \tilde{X}$. Since X is a Banach space, this Cauchy sequence indeed has a limit $x \in X$. And since \tilde{X} is closed, this limit x must be an element of \tilde{X} , which establishes the proof. \Box
- **c.** Suppose, $(A_n)_{n=1}^{\infty} \subset \mathcal{L}(X,Y)$ is a Cauchy sequence, i.e., $\forall \varepsilon \exists N : \forall n, m \geq N :$ $\|A_n - A_m\|_{\mathcal{L}(X,Y)} < \varepsilon$. Our goal is to construct a limit operator $A \in \mathcal{L}(X,Y)$ such that $A_n \to A$ in $\mathcal{L}(X,Y)$. To do so, let us consider any $x \in X$. For $n, m \geq N$, we have

$$||A_n x - A_m x||_Y = ||(A_n - A_m)x||_Y \le ||A_n - A_m||_{\mathcal{L}(X,Y)} ||x||_X \le \varepsilon ||x||_X,$$

which becomes arbitrarily small as $\varepsilon \to 0$. So $(A_n x)_{n=1}^{\infty}$ is a Cauchy sequence in Y. Since Y is a Banach space, there exists a limit $A_n x \to y_x \in Y$. We now define the operator $A: X \to Y$ via $Ax := y_x$ for any $x \in X$ and claim that it is the desired limit of $(A_n)_{n=1}^{\infty}$.

First, A is bounded, so $A \in \mathcal{L}(X, Y)$, since for any $x \in X$,

$$||Ax||_{Y} = ||\lim_{n \to \infty} A_{n}x||_{Y} \le \lim_{n \to \infty} ||A_{n}x||_{Y} \le \limsup_{n \to \infty} ||A_{n}||_{\mathcal{L}(X,Y)} ||x||_{X} .$$

So $||A||_{\mathcal{L}(X,Y)} \leq \limsup_{n\to\infty} ||A_n||_{\mathcal{L}(X,Y)}$ and the latter is bounded as $(A_n)_{n=1}^{\infty}$ is a Cauchy sequence.

Second, $(A_n)_{n=1}^{\infty}$ indeed converges to A, as for n > N,

$$\|(A-A_n)x\|_Y \le \limsup_{m\to\infty} \|(A_m-A_n)x\|_Y \le \varepsilon \|x\|_X .$$

So $||A - A_n||_{\mathcal{L}(X,Y)} \leq \varepsilon$, which can be achieved for any $\varepsilon > 0$. Thus, $A_n \to A$ in $\mathcal{L}(X,Y)$ and the latter space is closed and therefore a Banach space. \Box

d. Our goal is to extend A to any $x \in X \setminus D$. Since $D \subset X$ is dense, there exists a sequence $(x_n)_{n=1}^{\infty} \subset D$ with $x_n \to x$. As $(x_n)_{n=1}^{\infty}$ converges, it is in particular a Cauchy sequence. Since (with $\| \cdot \| = \| \cdot \|_{\mathcal{L}(X,Y)}$)

$$||Ax_n - Ax_m||_Y \le ||A|| ||x_n - x_m||_X,$$

the sequence $(Ax_n)_{n=1}^{\infty} \subset Y$ is also a Cauchy sequence. And as Y is a Banach space, there exists a limit $Ax_n \to y_x \in Y$. We now define the extension $\overline{A} : X \to Y$ as

$$\overline{A}x := \begin{cases} Ax & \text{if } x \in D \\ y_x & \text{if } x \in X \setminus D \end{cases}$$

It remains to prove that $\|\overline{A}\| = \|A\|$. First,

$$\|\overline{A}\| = \sup_{x \in X \setminus \{0\}} \frac{\|\overline{A}x\|}{\|x\|} \ge \sup_{x \in D \setminus \{0\}} \frac{\|Ax\|}{\|x\|} = \|A\|.$$

On the other hand, for $x \in X \setminus D$, we have

$$\|\overline{A}x\|_{Y} = \|\lim_{n \to \infty} Ax_{n}\|_{Y} = \lim_{n \to \infty} \|Ax_{n}\|_{Y} \le \|A\|\lim_{n \to \infty} \|x_{n}\|_{X} = \|A\|\|x\|_{X}.$$

So $\|\overline{A}\| \leq \|A\|$, which finishes the proof.

Problem 2: Derivative Operator (5+5 points)

a. To show that $2\pi i\mathbb{Z} \subset \sigma_p(A_3)$, we construct an explicit eigenfunction for every eigenvalue $\lambda_p := 2\pi i p, p \in \mathbb{Z}$. In fact, for $f_p(x) := e^{2\pi i p x}$, we have $f_p(0) = 1 = f_p(1)$ so $f_p \in D_3$, and

$$(A_3 f_p)(x) = f'_p(x) = 2\pi i p e^{2\pi i p x} = \lambda_p f_p(x) .$$
 (2)

So f_p is indeed an eigenfunction for λ_p .

We may now finish the proof by showing that $z \in \rho(A_3)$ for any $z \in \mathbb{C} \setminus 2\pi i\mathbb{Z}$, since then $2\pi i\mathbb{Z} \supset \sigma(A_3) \supset \sigma_p(A_3)$. To do so, we construct the resolvent $(A_3 - z)^{-1}$ explicitly: It is defined on $g \in C([0, 1])$ whenever there exists an $f \in D_3$, $f =: (A_3 - z)^{-1}g$ with

$$(A_3 - z)f = g \quad \Leftrightarrow \quad f'(x) - zf(x) = g(x) \ \forall x \in [0, 1] .$$
(3)

This is an ODE, whose most general solution, e.g., obtained by the method of Green's functions (also called "variation of the constant" or "Duhamel's formula"), reads

$$f(x) = \int_0^x e^{z(x-t)} g(t) \, \mathrm{d}t + f_0 e^{zx} =: (Sg)(x) \;, \tag{4}$$

with an arbitrary $f_0 \in \mathbb{C}$. Indeed, one can check that

$$f'(x) = \int_0^x z e^{z(x-t)} g(t) \, \mathrm{d}t + (e^{z(x-x)}g(x)) + z f_0 e^{zx} = z f(x) + g(x) \,, \tag{5}$$

so f'(x) = zf(x) + g(x) is continuous, whence $f \in C([0, 1])$. Further, we can attain

$$f(0) = f(1) \quad \Leftrightarrow \quad f_0 = \int_0^1 e^{z(1-t)} g(t) \, \mathrm{d}t + f_0 e^z$$

by choosing $f_0 := (1 - e^z)^{-1} \int_0^1 e^{z(1-t)} g(t) dt$. Note that $(1 - e^z)^{-1}$ only exists because $z \notin 2\pi i\mathbb{Z}$ (otherwise, the resolvent would be ill-defined). With this choice of f_0 we indeed have $f \in D_3$ and f satisfies (3), which is $(A_3 - z)Sg = g$. The operator S is also bounded, as

$$|(Sg)(x)| \leq \int_0^1 |e^z| \max_{t \in [0,1]} |g(t)| \, \mathrm{d}t \leq |e^z| ||g||_{C([0,1])} ,$$

$$|(Sg)'(x)| = |z(Sg)(x) + g(x)| \leq (|z||e^z| + 1) ||g||_{C([0,1])} .$$

Further, integration by parts yields

$$S(A_3 - z)f = \int_0^x e^{z(x-t)} (f'(t) - zf(t)) \, \mathrm{d}t = [e^{z(x-t)}f(t)]_{t=0}^x = f(x) \, .$$

So S is indeed the desired resolvent $(A_3 - z)^{-1}$.

b. First we show $\sigma_p(A_4) = \emptyset$, that is, there are no eigenfunctions. Suppose that $f \in D_4$ was an eigenfunction of some eigenvalue $\lambda \in \mathbb{C}$. Then, f solves the Cauchy problem

$$\begin{cases} f'(x) &= \lambda f(x) \quad \text{for } x \in [0,1] \\ f(0) &= 0 \end{cases},$$

which, by the Picard-Lindelöf theorem, has the unique solution f(0) = 0. So f is the zero function, which can never be an eigenfunction.

To prove $\sigma(A_4) = \mathbb{C}$, we show that for any $z \in \mathbb{C}$, there is no bounded resolvent $(A_4-z)^{-1}$. In analogy to (3), such a resolvent would only exist if for any $g \in C([0,1])$, there is some $f \in D_4$ with f' - zf = g. Recall (4) that the most general solution to this ODE reads

$$f(x) = \int_0^x e^{z(x-t)} g(t) \, \mathrm{d}t + f_0 e^{zx} \, .$$

Now $f \in D_4$ entails the two conditions $f(0) = 0 \Rightarrow f_0 = 0$ and

$$f(1) = \int_0^1 e^{z(1-t)} g(t) \, \mathrm{d}t = 0$$

It is easy to see that the latter condition is violated for some $g \in C([0,1])$, for instance, say

$$g(t) := e^{-z(1-t)} \quad \Rightarrow \quad f(1) = \int_0^1 1 \, \mathrm{d}t = 1 \neq 0 \; .$$

So a resolvent can for no $z \in \mathbb{C}$ be defined on every $g \in C([0, 1])$.

Page 4 of 5

Problem 3: Operator-valued analytic functions (10 points)

The assumption that $L : \mathbb{C} \to \mathcal{L}(X)$ is an operator-valued analytic function means that for any $y \in X^*, x \in X$, the function $f_{y,x} : \mathbb{C} \to \mathbb{C}, f_{y,x}(z) := \langle y, L(z)x \rangle$ is analytic. By $\|L(z)\| \leq M$ (which holds uniformly in $z \in \mathbb{C}$) and the Cauchy-Schwarz inequality, we conclude

$$|f_{y,x}(z)| = |\langle y, L(z)x \rangle| \le ||y||_{X^*} ||L(z)x||_X \le M ||y||_{X^*} ||x||_X ,$$
(6)

so $f_{y,x}$ is bounded. Thus, Liouville's theorem applies and $f_{y,x}$ is constant for any fixed $y \in X^*, x \in X$.

From this we now conclude that L(z) is constant, that is, L(z)x = L(z')x for any $z, z' \in \mathbb{C}$ and $x \in X$: We know that for any $y \in X^*$,

$$f_{y,x}(z) = f_{y,x}(z') \quad \Leftrightarrow \quad \langle y, (L(z)x - L(z')x) \rangle = 0 ,$$

so L(z)x - L(z')x = 0.