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Problem 1: Banach Spaces and Bounded Operators (2+2+3+3 points)

a. We have to verify the three axioms of a norm:

• Homogeneity : ∥λ[f ]∥p =
(∫

|λf(x)|pdx
)1/p

=
(
|λ|p

∫
|f(x)|pdx

)1/p
= |λ|

(∫
|f(x)|pdx

)1/p
= λ∥[f ]∥p

• Positive definiteness : Since |f(x)| ≥ 0, we also have
∫
|f(x)|pdx ≥ 0 and thus

∥[f ]∥p ≥ 0. The case ∥[f ]∥p = 0 only occurs if1∫
|f(x)|pdx = 0 ⇔ |f(x)|p = 0 a.e. ⇔ f(x) = 0 a.e. ⇔ [f ] = 0

• Triangle inequality : This proof is a bit more tricky. It uses Hölder’s inequality

∥[fg]∥1 ≤ ∥[f ]∥p∥[g]∥q, (1)

which holds for any [f ] ∈ Lp(Rd), [g] ∈ Lq(Rd), where 1 = 1
p
+ 1

q
⇔ p

q
= p − 1

and [fg](x) := f(x)g(x) (a.e.) is the pointwise product.
What we have to show is ∥[f ] + [g]∥p ≤ ∥[f ]∥p + ∥[g]∥p. For p > 1,

∥[f ] + [g]∥pp =
∫

|f(x) + g(x)|pdx =

∫
|f(x) + g(x)||f(x) + g(x)|p−1dx

≤
∫

|f(x)||f(x) + g(x)|p−1dx+

∫
|g(x)||f(x) + g(x)|p−1dx

(1)

≤
(∫

|f(x)|pdx
)1/p(∫

|f(x) + g(x)|q(p−1)dx

)1/q

+

(∫
|g(x)|pdx

)1/p (∫
|f(x) + g(x)|q(p−1)dx

)1/q

= ∥[f ]∥p∥[f ] + [g]∥p/qp + ∥[g]∥p∥[f ] + [g]∥p/qp

=
(
∥[f ]∥p + ∥[g]∥p

)
∥[f ] + [g]∥p/qp .

1Recall that “a.e.” is the abbreviation for “almost everywhere”, meaning “for all x ∈ Rd \N where N
is some set of Lebesgue measure zero”. Also recall that if a function f is zero almost everywhere,
then [f ] = [0] = 0, i.e., it is in the same equivalence class as the zero function and this equivalence
class is the zero element of the vector space Lp(Rd).
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We conclude, using p/q = p− 1,

∥[f ] + [g]∥p−p/q
p ≤ ∥[f ]∥p + ∥[g]∥p ⇔ ∥[f ] + [g]∥p ≤ ∥[f ]∥p + ∥[g]∥p ,

which is what we wanted to show. In case p = 1, we simply have

∥[f ] + [g]∥1 =
∫

|f(x) + g(x)|dx ≤
∫

|f(x)|dx+

∫
|g(x)|dx = ∥[f ]∥1 + ∥[g]∥1 .

□

b. X̃ being a Banach space means that every Cauchy sequence (xn)
∞
n=1 ⊂ X̃ must

converge to a limit x ∈ X̃.
Now, any Cauchy sequence (xn)

∞
n=1 ⊂ X̃ is also a Cauchy sequence in X ⊃ X̃. Since

X is a Banach space, this Cauchy sequence indeed has a limit x ∈ X. And since X̃
is closed, this limit x must be an element of X̃, which establishes the proof. □

c. Suppose, (An)
∞
n=1 ⊂ L(X, Y ) is a Cauchy sequence, i.e., ∀ε ∃N : ∀n,m ≥ N :

∥An − Am∥L(X,Y ) < ε. Our goal is to construct a limit operator A ∈ L(X, Y ) such
that An → A in L(X, Y ). To do so, let us consider any x ∈ X. For n,m ≥ N , we
have

∥Anx− Amx∥Y = ∥(An − Am)x∥Y ≤ ∥An − Am∥L(X,Y )∥x∥X ≤ ε∥x∥X ,

which becomes arbitrarily small as ε → 0. So (Anx)
∞
n=1 is a Cauchy sequence in Y .

Since Y is a Banach space, there exists a limit Anx → yx ∈ Y . We now define the
operator A : X → Y via Ax := yx for any x ∈ X and claim that it is the desired
limit of (An)

∞
n=1.

First, A is bounded, so A ∈ L(X, Y ), since for any x ∈ X,

∥Ax∥Y = ∥ lim
n→∞

Anx∥Y ≤ lim
n→∞

∥Anx∥Y ≤ lim sup
n→∞

∥An∥L(X,Y )∥x∥X .

So ∥A∥L(X,Y ) ≤ lim supn→∞ ∥An∥L(X,Y ) and the latter is bounded as (An)
∞
n=1 is a

Cauchy sequence.
Second, (An)

∞
n=1 indeed converges to A, as for n > N ,

∥(A− An)x∥Y ≤ lim sup
m→∞

∥(Am − An)x∥Y ≤ ε∥x∥X .

So ∥A − An∥L(X,Y ) ≤ ε, which can be achieved for any ε > 0. Thus, An → A in
L(X, Y ) and the latter space is closed and therefore a Banach space. □

d. Our goal is to extend A to any x ∈ X \ D. Since D ⊂ X is dense, there exists
a sequence (xn)

∞
n=1 ⊂ D with xn → x. As (xn)

∞
n=1 converges, it is in particular a

Cauchy sequence. Since (with ∥ . ∥ = ∥ . ∥L(X,Y ))

∥Axn − Axm∥Y ≤ ∥A∥∥xn − xm∥X ,
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the sequence (Axn)
∞
n=1 ⊂ Y is also a Cauchy sequence. And as Y is a Banach space,

there exists a limit Axn → yx ∈ Y . We now define the extension A : X → Y as

Ax :=

{
Ax if x ∈ D

yx if x ∈ X \D
.

It remains to prove that ∥A∥ = ∥A∥. First,

∥A∥ = sup
x∈X\{0}

∥Ax∥
∥x∥

≥ sup
x∈D\{0}

∥Ax∥
∥x∥

= ∥A∥ .

On the other hand, for x ∈ X \D, we have

∥Ax∥Y = ∥ lim
n→∞

Axn∥Y = lim
n→∞

∥Axn∥Y ≤ ∥A∥ lim
n→∞

∥xn∥X = ∥A∥∥x∥X .

So ∥A∥ ≤ ∥A∥, which finishes the proof. □

Problem 2: Derivative Operator (5+5 points)

a. To show that 2πiZ ⊂ σp(A3), we construct an explicit eigenfunction for every eigen-
value λp := 2πip, p ∈ Z. In fact, for fp(x) := e2πipx, we have fp(0) = 1 = fp(1) so
fp ∈ D3, and

(A3fp)(x) = f ′
p(x) = 2πipe2πipx = λpfp(x) . (2)

So fp is indeed an eigenfunction for λp.
We may now finish the proof by showing that z ∈ ρ(A3) for any z ∈ C \ 2πiZ,
since then 2πiZ ⊃ σ(A3) ⊃ σp(A3). To do so, we construct the resolvent (A3 − z)−1

explicitly: It is defined on g ∈ C([0, 1]) whenever there exists an f ∈ D3, f =:
(A3 − z)−1g with

(A3 − z)f = g ⇔ f ′(x)− zf(x) = g(x) ∀x ∈ [0, 1] . (3)

This is an ODE, whose most general solution, e.g., obtained by the method of Green’s
functions (also called “variation of the constant” or “Duhamel’s formula”), reads

f(x) =

∫ x

0

ez(x−t)g(t) dt+ f0e
zx =: (Sg)(x) , (4)

with an arbitrary f0 ∈ C. Indeed, one can check that

f ′(x) =

∫ x

0

zez(x−t)g(t) dt+ (ez(x−x)g(x)) + zf0e
zx = zf(x) + g(x) , (5)

so f ′(x) = zf(x) + g(x) is continuous, whence f ∈ C([0, 1]). Further, we can attain

f(0) = f(1) ⇔ f0 =

∫ 1

0

ez(1−t)g(t) dt+ f0e
z
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by choosing f0 := (1−ez)−1
∫ 1

0
ez(1−t)g(t) dt. Note that (1−ez)−1 only exists because

z /∈ 2πiZ (otherwise, the resolvent would be ill-defined). With this choice of f0 we
indeed have f ∈ D3 and f satisfies (3), which is (A3 − z)Sg = g. The operator S is
also bounded, as

|(Sg)(x)| ≤
∫ 1

0

|ez| max
t∈[0,1]

|g(t)| dt ≤ |ez|∥g∥C([0,1]) ,

|(Sg)′(x)| =|z(Sg)(x) + g(x)| ≤ (|z||ez|+ 1)∥g∥C([0,1]) .

Further, integration by parts yields

S(A3 − z)f =

∫ x

0

ez(x−t)(f ′(t)− zf(t)) dt = [ez(x−t)f(t)]xt=0 = f(x) .

So S is indeed the desired resolvent (A3 − z)−1. □

b. First we show σp(A4) = ∅, that is, there are no eigenfunctions. Suppose that f ∈ D4

was an eigenfunction of some eigenvalue λ ∈ C. Then, f solves the Cauchy problem{
f ′(x) = λf(x) for x ∈ [0, 1]

f(0) = 0
,

which, by the Picard-Lindelöf theorem, has the unique solution f(0) = 0. So f is
the zero function, which can never be an eigenfunction.
To prove σ(A4) = C, we show that for any z ∈ C, there is no bounded resolvent
(A4−z)−1. In analogy to (3), such a resolvent would only exist if for any g ∈ C([0, 1]),
there is some f ∈ D4 with f ′ − zf = g. Recall (4) that the most general solution to
this ODE reads

f(x) =

∫ x

0

ez(x−t)g(t) dt+ f0e
zx .

Now f ∈ D4 entails the two conditions f(0) = 0 ⇒ f0 = 0 and

f(1) =

∫ 1

0

ez(1−t)g(t) dt = 0 .

It is easy to see that the latter condition is violated for some g ∈ C([0, 1]), for
instance, say

g(t) := e−z(1−t) ⇒ f(1) =

∫ 1

0

1 dt = 1 ̸= 0 .

So a resolvent can for no z ∈ C be defined on every g ∈ C([0, 1]). □
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Problem 3: Operator-valued analytic functions (10 points)

The assumption that L : C → L(X) is an operator-valued analytic function means that
for any y ∈ X∗, x ∈ X, the function fy,x : C → C, fy,x(z) := ⟨y, L(z)x⟩ is analytic. By
∥L(z)∥ ≤ M (which holds uniformly in z ∈ C) and the Cauchy-Schwarz inequality, we
conclude

|fy,x(z)| = |⟨y, L(z)x⟩| ≤ ∥y∥X∗∥L(z)x∥X ≤ M∥y∥X∗∥x∥X , (6)

so fy,x is bounded. Thus, Liouville’s theorem applies and fy,x is constant for any fixed
y ∈ X∗, x ∈ X.
From this we now conclude that L(z) is constant, that is, L(z)x = L(z′)x for any
z, z′ ∈ C and x ∈ X: We know that for any y ∈ X∗,

fy,x(z) = fy,x(z
′) ⇔ ⟨y, (L(z)x− L(z′)x)⟩ = 0 ,

so L(z)x− L(z′)x = 0. □
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