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Metodi Matematici della Meccanica Quantistica

Solutions for Assignment 1

Discussed on Friday, October 6, 2023.
In case of questions, contact sascha.lillQunimi.it .

Problem 1: Banach Spaces and Bounded Operators (24-2+3+3 points)

a. We have to verify the three axioms of a norm:

o Homogeneity: |A[f)ll, = (f [\ (@)[Pde) " = (AP [ | f(2)pdz) "
= A (S 1f(@)Pd2)"" = NI[f]]l

e Positive definiteness: Since |f(z)| > 0, we also have [|f(z)[Pdx > 0 and thus
I[f]ll, = 0. The case ||[f]]l, = 0 only occurs iff]

/]f Wde=0 < |[f(z)P=0ae <« f(r)=0ae < [f]=0

e Triangle inequality: This proof is a bit more tricky. It uses Holder’s inequality

If gl < LA M g]llg, (1)

which holds for any [f] € LP(R%),[g] € LI(RY), where 1 =1 +1 & 2 =p 1
and [fg](x) := f(x)g(x) (a.e.) is the pointwise product.
What we have to show is [[1f] + [gllly < /]l + llgll- For p > 1,

||[f]+[g]||§=/If($)+g(fff)|”dfv=/If(l’)+g(x)||f($)+g(fv)l”_1d$
= /\f(ﬂf)\lf(x)+g(w)!p_1d$+/!9(x)\|f(x)+9($)!”_1d$

([1stras) " ([ 1560+ fe—vas "
e I”dx)l/p</|f )+ gl |”1>dx)q

= WAL + 172 + Nl L)+ Lol
- (|Hf]||p gl ) 0071+ e

'Recall that “a.e.” is the abbreviation for “almost everywhere”, meaning “for all z € R%\ N where N/
is some set of Lebesgue measure zero”. Also recall that if a function f is zero almost everywhere,
then [f] = [0] = 0, i.e., it is in the same equivalence class as the zero function and this equivalence
class is the zero element of the vector space LP(R?).
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We conclude, using p/q =p — 1,
1L+ Ll < Al + Wglle & LA+ [allls < LA + gl

which is what we wanted to show. In case p = 1, we simply have

I+ 9l = [ 17@) + g@lde < [ 1@z + [ lgG@)lde = 1Al + gl
U

b. X being a Banach space means that every Cauchy sequence (z,)%%, C X must
converge to a limit z € X.
Now, any Cauchy sequence (z,,)5°; C X is also a Cauchy sequence in X D X. Since
X is a Banach space, this Cauchy sequence indeed has a limit z € X. And since X
is closed, this limit 2 must be an element of X, which establishes the proof. Il

c. Suppose, (A4,)2, C L(X,Y) is a Cauchy sequence, i.e., Ve IN : Vn,m > N :
|An — Apllzx,y) < €. Our goal is to construct a limit operator A € £(X,Y’) such
that A, — A in L(X,Y). To do so, let us consider any z € X. For n,m > N, we
have

[An2 — Amzlly = [[(An — Am)zlly < [|An = Amlleoen llzllx < ellzllx,

which becomes arbitrarily small as ¢ — 0. So (A,2)52, is a Cauchy sequence in Y.
Since Y is a Banach space, there exists a limit A,z — y, € Y. We now define the
operator A : X — Y via Az := y, for any x € X and claim that it is the desired
limit of (A,)32,.

First, A is bounded, so A € L(X,Y), since for any =z € X,

|Az|ly = || hm Apzx|ly < hm |Anz|ly <limsup ||As]lcxvllz]x -

n—o0

o0

So || Allzx,y)y < limsup,_, ||Anllzcx,y) and the latter is bounded as (A4,)52, is a
Cauchy sequence.
Second, (A4,)2, indeed converges to A, as for n > N,

(A — A)elly < limsup[|(An — Auzlly < ellz]x -

m—r0o0

So [|[A — A,llzx,y) < €, which can be achieved for any ¢ > 0. Thus, A, — A in
L(X,Y) and the latter space is closed and therefore a Banach space. i

d. Our goal is to extend A to any x € X \ D. Since D C X is dense, there exists
a sequence (z,)2, C D with z,, — z. As (2,)9, converges, it is in particular a
Cauchy sequence. Since (with || . || = . [lzx,v))

[Azy — Az ly < [Allllzn — 2mllx
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the sequence (Az,)2, C Y is also a Cauchy sequence. And as Y is a Banach space,
there exists a limit Ax,, — y, € Y. We now define the extension A: X — Y as

— Ax ifxeD
Ar = _ )
Y ifzre X\ D

It remains to prove that ||A|| = || Al|. First,

— Az Ax
A= sup A S IAT gy
zeX\{0} [| ]| zeD\{0} | ]|
On the other hand, for z € X \ D, we have
[Azly = | lim Az, |y = lim [JAz, |y < [|A] lim 2, ]x = Al ]
So ||A]| < ||Al|, which finishes the proof. O

Problem 2: Derivative Operator (5+5 points)

a. To show that 2miZ C 0,(As), we construct an explicit eigenfunction for every eigen-
value \, := 2mip,p € Z. In fact, for f,(z) := €*™* we have f,(0) = 1 = f,(1) so
fp € D3, and

(Asfy)(2) = fo(x) = 2mipe®™™* = N, fy () . (2)
So f, is indeed an eigenfunction for A,.
We may now finish the proof by showing that z € p(A3) for any z € C\ 2miZ,
since then 2miZ D o(A3) D 0,(A3). To do so, we construct the resolvent (A3 — 2)~!
explicitly: It is defined on g € C([0,1]) whenever there exists an f € Ds, f =:
(A3 — 2)7tg with

(As—2)f=9g & [flz)—-zf(z)=g(x) Ve e0,1]. (3)

This is an ODE, whose most general solution, e.g., obtained by the method of Green’s
functions (also called “variation of the constant” or “Duhamel’s formula”), reads

ﬂm—Aﬁm”mwa+MW—w@mm (4)

with an arbitrary fy € C. Indeed, one can check that

f'(x) = /Om 2" 0g(t) dt + (7 g(2)) + 2 foe™ = 2f(2) + g(2) , ()

so f'(x) = zf(x) + g(z) is continuous, whence f € C([0,1]). Further, we can attain

1
O =f1) & fo= /0 00g(t) dt + foe®
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by choosing fy := (1—¢e*)~! fol e*1=1g(t) dt. Note that (1—e?)~! only exists because
z ¢ 2miZ (otherwise, the resolvent would be ill-defined). With this choice of fy we
indeed have f € D3 and f satisfies , which is (A3 — 2)Sg = g. The operator S is
also bounded, as

1
(Sg)()| < / €] max [g(8)] dt < [e*]lgllcqoup -
0 t€(0,1]

|(S9) ()| =[2(Sg)(x) + g(x)| < ([lle*] + Dllglleqo -

Further, integration by parts yields
S(As—2)f = / () = 2f (1) dt = [V F ()] = f(2) -
0
So S is indeed the desired resolvent (Az — 2)7t. O

b. First we show o,(A4) = 0, that is, there are no eigenfunctions. Suppose that f € D,
was an eigenfunction of some eigenvalue A € C. Then, f solves the Cauchy problem

f'(x) =Xf(z) forxe]0,]1]

f0) =0 ’
which, by the Picard-Lindel6f theorem, has the unique solution f(0) = 0. So f is
the zero function, which can never be an eigenfunction.
To prove o(A4) = C, we show that for any z € C, there is no bounded resolvent
(A4—2z)7'. In analogy to (3)), such a resolvent would only exist if for any g € C([0, 1]),

there is some f € D, with f' — zf = g. Recall that the most general solution to
this ODE reads

fa) = / Ty (t) db 4 o™

Now f € D, entails the two conditions f(0) =0 = f, = 0 and

It is easy to see that the latter condition is violated for some g € C([0,1]), for
instance, say

g(t) =070 = f(1) = /01 1dt=1#0.

So a resolvent can for no z € C be defined on every g € C([0, 1]). O
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Problem 3: Operator-valued analytic functions (10 points)

The assumption that L : C — L£(X) is an operator-valued analytic function means that
for any y € X*,x € X, the function f,, : C — C, f,.(2) := (y, L(2)x) is analytic. By
|L(%)|] < M (which holds uniformly in z € C) and the Cauchy-Schwarz inequality, we
conclude

X X

[fy2(2)] = [y, L(z))] < [|y] llx (6)

so fy.» is bounded. Thus, Liouville’s theorem applies and f, , is constant for any fixed
ye X xeX.

From this we now conclude that L(z) is constant, that is, L(z)z = L(z')z for any
2,7 € Cand z € X: We know that for any y € X*,

fya(2) = fya() & {y,(L(2)z = L(2)z)) =0,

so L(z)x — L(z" )z = 0. O

L(z)x||lx < Myl
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