Metodi Matematici della Meccanica Quantistica

Solutions for Assignment 1

Discussed on Friday, October 6, 2023.
In case of questions, contact sascha.lill@unimi.it .

Problem 1: Banach Spaces and Bounded Operators ($2+2+3+3$ points)
a. We have to verify the three axioms of a norm:

- Homogeneity: $\|\lambda[f]\|_{p}=\left(\int|\lambda f(x)|^{p} \mathrm{~d} x\right)^{1 / p}=\left(|\lambda|^{p} \int|f(x)|^{p} \mathrm{~d} x\right)^{1 / p}$
$=|\lambda|\left(\int|f(x)|^{p} \mathrm{~d} x\right)^{1 / p}=\lambda\|[f]\|_{p}$
- Positive definiteness: Since $|f(x)| \geq 0$, we also have $\int|f(x)|^{p} \mathrm{~d} x \geq 0$ and thus $\|[f]\|_{p} \geq 0$. The case $\|[f]\|_{p}=0$ only occurs if ${ }^{\text {1 }}$

$$
\int|f(x)|^{p} \mathrm{~d} x=0 \quad \Leftrightarrow \quad|f(x)|^{p}=0 \text { a.e. } \quad \Leftrightarrow \quad f(x)=0 \text { a.e. } \quad \Leftrightarrow \quad[f]=0
$$

- Triangle inequality: This proof is a bit more tricky. It uses Hölder's inequality

$$
\begin{equation*}
\|[f g]\|_{1} \leq\|[f]\|_{p}\|[g]\|_{q}, \tag{1}
\end{equation*}
$$

which holds for any $[f] \in L^{p}\left(\mathbb{R}^{d}\right),[g] \in L^{q}\left(\mathbb{R}^{d}\right)$, where $1=\frac{1}{p}+\frac{1}{q} \Leftrightarrow \frac{p}{q}=p-1$ and $[f g](x):=f(x) g(x)$ (a.e.) is the pointwise product.
What we have to show is $\|[f]+[g]\|_{p} \leq\|[f]\|_{p}+\|[g]\|_{p}$. For $p>1$,

$$
\begin{aligned}
& \|[f]+[g]\|_{p}^{p}=\int|f(x)+g(x)|^{p} \mathrm{~d} x=\int|f(x)+g(x) \| f(x)+g(x)|^{p-1} \mathrm{~d} x \\
& \leq \int|f(x)||f(x)+g(x)|^{p-1} \mathrm{~d} x+\int|g(x) \| f(x)+g(x)|^{p-1} \mathrm{~d} x \\
& \text { 䡒 } \\
& \leq\left(\int|f(x)|^{p} \mathrm{~d} x\right)^{1 / p}\left(\int|f(x)+g(x)|^{q(p-1)} \mathrm{d} x\right)^{1 / q} \\
& \quad+\left(\int|g(x)|^{p} \mathrm{~d} x\right)^{1 / p}\left(\int|f(x)+g(x)|^{q(p-1)} \mathrm{d} x\right)^{1 / q} \\
& =\|[f]\|_{p}\|[f]+[g]\|_{p}^{p / q}+\|[g]\|_{p}\|[f]+[g]\|_{p}^{p / q} \\
& =\left(\|[f]\|_{p}+\|[g]\|_{p}\right)\|[f]+[g]\|_{p}^{p / q} .
\end{aligned}
$$

[^0]We conclude, using $p / q=p-1$,

$$
\|[f]+[g]\|_{p}^{p-p / q} \leq\|[f]\|_{p}+\|[g]\|_{p} \quad \Leftrightarrow \quad\|[f]+[g]\|_{p} \leq\|[f]\|_{p}+\|[g]\|_{p}
$$

which is what we wanted to show. In case $p=1$, we simply have

$$
\|[f]+[g]\|_{1}=\int|f(x)+g(x)| \mathrm{d} x \leq \int|f(x)| \mathrm{d} x+\int|g(x)| \mathrm{d} x=\|[f]\|_{1}+\|[g]\|_{1}
$$

b. \tilde{X} being a Banach space means that every Cauchy sequence $\left(x_{n}\right)_{n=1}^{\infty} \subset \tilde{X}$ must converge to a limit $x \in \tilde{X}$.
Now, any Cauchy sequence $\left(x_{n}\right)_{n=1}^{\infty} \subset \tilde{X}$ is also a Cauchy sequence in $X \supset \tilde{X}$. Since X is a Banach space, this Cauchy sequence indeed has a limit $x \in X$. And since \tilde{X} is closed, this limit x must be an element of \tilde{X}, which establishes the proof.
c. Suppose, $\left(A_{n}\right)_{n=1}^{\infty} \subset \mathcal{L}(X, Y)$ is a Cauchy sequence, i.e., $\forall \varepsilon \exists N: \forall n, m \geq N$: $\left\|A_{n}-A_{m}\right\|_{\mathcal{L}(X, Y)}<\varepsilon$. Our goal is to construct a limit operator $A \in \mathcal{L}(X, Y)$ such that $A_{n} \rightarrow A$ in $\mathcal{L}(X, Y)$. To do so, let us consider any $x \in X$. For $n, m \geq N$, we have

$$
\left\|A_{n} x-A_{m} x\right\|_{Y}=\left\|\left(A_{n}-A_{m}\right) x\right\|_{Y} \leq\left\|A_{n}-A_{m}\right\|_{\mathcal{L}(X, Y)}\|x\|_{X} \leq \varepsilon\|x\|_{X}
$$

which becomes arbitrarily small as $\varepsilon \rightarrow 0$. So $\left(A_{n} x\right)_{n=1}^{\infty}$ is a Cauchy sequence in Y. Since Y is a Banach space, there exists a limit $A_{n} x \rightarrow y_{x} \in Y$. We now define the operator $A: X \rightarrow Y$ via $A x:=y_{x}$ for any $x \in X$ and claim that it is the desired limit of $\left(A_{n}\right)_{n=1}^{\infty}$.
First, A is bounded, so $A \in \mathcal{L}(X, Y)$, since for any $x \in X$,

$$
\|A x\|_{Y}=\left\|\lim _{n \rightarrow \infty} A_{n} x\right\|_{Y} \leq \lim _{n \rightarrow \infty}\left\|A_{n} x\right\|_{Y} \leq \limsup _{n \rightarrow \infty}\left\|A_{n}\right\|_{\mathcal{L}(X, Y)}\|x\|_{X}
$$

So $\|A\|_{\mathcal{L}(X, Y)} \leq \lim \sup _{n \rightarrow \infty}\left\|A_{n}\right\|_{\mathcal{L}(X, Y)}$ and the latter is bounded as $\left(A_{n}\right)_{n=1}^{\infty}$ is a Cauchy sequence.
Second, $\left(A_{n}\right)_{n=1}^{\infty}$ indeed converges to A, as for $n>N$,

$$
\left\|\left(A-A_{n}\right) x\right\|_{Y} \leq \limsup _{m \rightarrow \infty}\left\|\left(A_{m}-A_{n}\right) x\right\|_{Y} \leq \varepsilon\|x\|_{X}
$$

So $\left\|A-A_{n}\right\|_{\mathcal{L}(X, Y)} \leq \varepsilon$, which can be achieved for any $\varepsilon>0$. Thus, $A_{n} \rightarrow A$ in $\mathcal{L}(X, Y)$ and the latter space is closed and therefore a Banach space.
d. Our goal is to extend A to any $x \in X \backslash D$. Since $D \subset X$ is dense, there exists a sequence $\left(x_{n}\right)_{n=1}^{\infty} \subset D$ with $x_{n} \rightarrow x$. As $\left(x_{n}\right)_{n=1}^{\infty}$ converges, it is in particular a Cauchy sequence. Since (with $\|\cdot\|=\|\cdot\|_{\mathcal{L}(X, Y)}$)

$$
\left\|A x_{n}-A x_{m}\right\|_{Y} \leq\|A\|\left\|x_{n}-x_{m}\right\|_{X}
$$

the sequence $\left(A x_{n}\right)_{n=1}^{\infty} \subset Y$ is also a Cauchy sequence. And as Y is a Banach space, there exists a limit $A x_{n} \rightarrow y_{x} \in Y$. We now define the extension $\bar{A}: X \rightarrow Y$ as

$$
\bar{A} x:= \begin{cases}A x & \text { if } x \in D \\ y_{x} & \text { if } x \in X \backslash D\end{cases}
$$

It remains to prove that $\|\bar{A}\|=\|A\|$. First,

$$
\|\bar{A}\|=\sup _{x \in X \backslash\{0\}} \frac{\|\bar{A} x\|}{\|x\|} \geq \sup _{x \in D \backslash\{0\}} \frac{\|A x\|}{\|x\|}=\|A\|
$$

On the other hand, for $x \in X \backslash D$, we have

$$
\|\bar{A} x\|_{Y}=\left\|\lim _{n \rightarrow \infty} A x_{n}\right\|_{Y}=\lim _{n \rightarrow \infty}\left\|A x_{n}\right\|_{Y} \leq\|A\| \lim _{n \rightarrow \infty}\left\|x_{n}\right\|_{X}=\|A\|\|x\|_{X}
$$

So $\|\bar{A}\| \leq\|A\|$, which finishes the proof.

Problem 2: Derivative Operator ($5+5$ points)

a. To show that $2 \pi i \mathbb{Z} \subset \sigma_{\mathrm{p}}\left(A_{3}\right)$, we construct an explicit eigenfunction for every eigenvalue $\lambda_{p}:=2 \pi i p, p \in \mathbb{Z}$. In fact, for $f_{p}(x):=e^{2 \pi i p x}$, we have $f_{p}(0)=1=f_{p}(1)$ so $f_{p} \in D_{3}$, and

$$
\begin{equation*}
\left(A_{3} f_{p}\right)(x)=f_{p}^{\prime}(x)=2 \pi i p e^{2 \pi i p x}=\lambda_{p} f_{p}(x) \tag{2}
\end{equation*}
$$

So f_{p} is indeed an eigenfunction for λ_{p}.
We may now finish the proof by showing that $z \in \rho\left(A_{3}\right)$ for any $z \in \mathbb{C} \backslash 2 \pi i \mathbb{Z}$, since then $2 \pi i \mathbb{Z} \supset \sigma\left(A_{3}\right) \supset \sigma_{\mathrm{p}}\left(A_{3}\right)$. To do so, we construct the resolvent $\left(A_{3}-z\right)^{-1}$ explicitly: It is defined on $g \in C([0,1])$ whenever there exists an $f \in D_{3}, f=$: $\left(A_{3}-z\right)^{-1} g$ with

$$
\begin{equation*}
\left(A_{3}-z\right) f=g \quad \Leftrightarrow \quad f^{\prime}(x)-z f(x)=g(x) \forall x \in[0,1] \tag{3}
\end{equation*}
$$

This is an ODE, whose most general solution, e.g., obtained by the method of Green's functions (also called "variation of the constant" or "Duhamel's formula"), reads

$$
\begin{equation*}
f(x)=\int_{0}^{x} e^{z(x-t)} g(t) \mathrm{d} t+f_{0} e^{z x}=:(S g)(x), \tag{4}
\end{equation*}
$$

with an arbitrary $f_{0} \in \mathbb{C}$. Indeed, one can check that

$$
\begin{equation*}
f^{\prime}(x)=\int_{0}^{x} z e^{z(x-t)} g(t) \mathrm{d} t+\left(e^{z(x-x)} g(x)\right)+z f_{0} e^{z x}=z f(x)+g(x) \tag{5}
\end{equation*}
$$

so $f^{\prime}(x)=z f(x)+g(x)$ is continuous, whence $f \in C([0,1])$. Further, we can attain

$$
f(0)=f(1) \quad \Leftrightarrow \quad f_{0}=\int_{0}^{1} e^{z(1-t)} g(t) \mathrm{d} t+f_{0} e^{z}
$$

by choosing $f_{0}:=\left(1-e^{z}\right)^{-1} \int_{0}^{1} e^{z(1-t)} g(t) \mathrm{d} t$. Note that $\left(1-e^{z}\right)^{-1}$ only exists because $z \notin 2 \pi i \mathbb{Z}$ (otherwise, the resolvent would be ill-defined). With this choice of f_{0} we indeed have $f \in D_{3}$ and f satisfies (3), which is $\left(A_{3}-z\right) S g=g$. The operator S is also bounded, as

$$
\begin{aligned}
& |(S g)(x)| \leq \int_{0}^{1}\left|e^{z}\right| \max _{t \in[0,1]}|g(t)| \mathrm{d} t \leq\left|e^{z}\right|\|g\|_{C([0,1])} \\
& \left|(S g)^{\prime}(x)\right|=|z(S g)(x)+g(x)| \leq\left(\left|z \| e^{z}\right|+1\right)\|g\|_{C([0,1])}
\end{aligned}
$$

Further, integration by parts yields

$$
S\left(A_{3}-z\right) f=\int_{0}^{x} e^{z(x-t)}\left(f^{\prime}(t)-z f(t)\right) \mathrm{d} t=\left[e^{z(x-t)} f(t)\right]_{t=0}^{x}=f(x)
$$

So S is indeed the desired resolvent $\left(A_{3}-z\right)^{-1}$.
b. First we show $\sigma_{\mathrm{p}}\left(A_{4}\right)=\emptyset$, that is, there are no eigenfunctions. Suppose that $f \in D_{4}$ was an eigenfunction of some eigenvalue $\lambda \in \mathbb{C}$. Then, f solves the Cauchy problem

$$
\left\{\begin{array}{l}
f^{\prime}(x)=\lambda f(x) \quad \text { for } x \in[0,1] \\
f(0)=0
\end{array}\right.
$$

which, by the Picard-Lindelöf theorem, has the unique solution $f(0)=0$. So f is the zero function, which can never be an eigenfunction.
To prove $\sigma\left(A_{4}\right)=\mathbb{C}$, we show that for any $z \in \mathbb{C}$, there is no bounded resolvent $\left(A_{4}-z\right)^{-1}$. In analogy to (3), such a resolvent would only exist if for any $g \in C([0,1])$, there is some $f \in D_{4}$ with $f^{\prime}-z f=g$. Recall (4) that the most general solution to this ODE reads

$$
f(x)=\int_{0}^{x} e^{z(x-t)} g(t) \mathrm{d} t+f_{0} e^{z x}
$$

Now $f \in D_{4}$ entails the two conditions $f(0)=0 \Rightarrow f_{0}=0$ and

$$
f(1)=\int_{0}^{1} e^{z(1-t)} g(t) \mathrm{d} t=0
$$

It is easy to see that the latter condition is violated for some $g \in C([0,1])$, for instance, say

$$
g(t):=e^{-z(1-t)} \Rightarrow f(1)=\int_{0}^{1} 1 \mathrm{~d} t=1 \neq 0
$$

So a resolvent can for no $z \in \mathbb{C}$ be defined on every $g \in C([0,1])$.

Problem 3: Operator-valued analytic functions (10 points)

The assumption that $L: \mathbb{C} \rightarrow \mathcal{L}(X)$ is an operator-valued analytic function means that for any $y \in X^{*}, x \in X$, the function $f_{y, x}: \mathbb{C} \rightarrow \mathbb{C}, f_{y, x}(z):=\langle y, L(z) x\rangle$ is analytic. By $\|L(z)\| \leq M$ (which holds uniformly in $z \in \mathbb{C}$) and the Cauchy-Schwarz inequality, we conclude

$$
\begin{equation*}
\left|f_{y, x}(z)\right|=|\langle y, L(z) x\rangle| \leq\|y\|_{X^{*}}\|L(z) x\|_{X} \leq M\|y\|_{X^{*}}\|x\|_{X}, \tag{6}
\end{equation*}
$$

so $f_{y, x}$ is bounded. Thus, Liouville's theorem applies and $f_{y, x}$ is constant for any fixed $y \in X^{*}, x \in X$.
From this we now conclude that $L(z)$ is constant, that is, $L(z) x=L\left(z^{\prime}\right) x$ for any $z, z^{\prime} \in \mathbb{C}$ and $x \in X$: We know that for any $y \in X^{*}$,

$$
f_{y, x}(z)=f_{y, x}\left(z^{\prime}\right) \quad \Leftrightarrow \quad\left\langle y,\left(L(z) x-L\left(z^{\prime}\right) x\right)\right\rangle=0
$$

so $L(z) x-L\left(z^{\prime}\right) x=0$.

[^0]: ${ }^{1}$ Recall that "a.e." is the abbreviation for "almost everywhere", meaning "for all $x \in \mathbb{R}^{d} \backslash \mathcal{N}$ where \mathcal{N} is some set of Lebesgue measure zero". Also recall that if a function f is zero almost everywhere, then $[f]=[0]=0$, i.e., it is in the same equivalence class as the zero function and this equivalence class is the zero element of the vector space $L^{p}\left(\mathbb{R}^{d}\right)$.

