Fisica Matematica 3

Esercizi di Meccanica Quantistica – Settimana 1

Da consegnare entro **lunedì**, **22/04/2024**, **15:30** via email (scannerizzato o LAT_EX) a Diwakar Naidu, diwakar.naidu@unimi.it

Problem 1: Esperimento di Stern-Gerlach: Stato Iniziale (10 punti)

Consideriamo un esperimento di Stern–Gerlach del tipo 4 (analizzatori Z–X–Z). A lezione abbiamo descrito lo stato iniziale come

$$\psi_1 = \frac{1}{\sqrt{2}} \left(|+_z\rangle + |-_z\rangle \right) .$$

Se invece usiamo lo stato iniziale

$$\psi_2 = \frac{1}{\sqrt{2}} \left(|+_x\rangle + |-_x\rangle \right)$$

O

$$\psi_3 = \frac{1}{\sqrt{2}} \left(|+_z\rangle - |-_z\rangle \right)$$

otteniamo le stesse intensità finali? Sostenete la vostra risposta con un calcolo.

Problem 2: Evoluzione Temporale (5+5 punti)

L'energia totale di un momento magnetico (classico) in un campo magnetico costante $\vec{B} \in \mathbb{R}^3$ è $E = -\vec{\mu} \cdot \vec{B}$, dove il momento magnetico e legato al momento angolare (classico) \vec{S} tramite $\vec{\mu} = g\vec{S}$, con $g \in \mathbb{R}$.

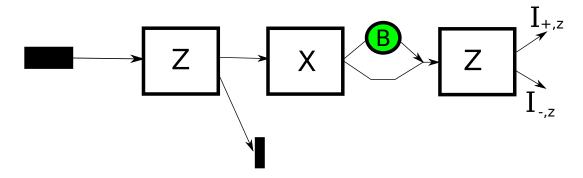
Per analogia, per studiare l'evoluzione temporale dello spin quantistico di un atomo di argento, descritto sullo spazio vettoriale $\mathcal{H} = \mathbb{C}^2$, definiamo l'operatore $H : \mathcal{H} \to \mathcal{H}$ tramite

$$H := -g\vec{S} \cdot \vec{B} := -g \left(B_x S_x + B_y S_y + B_z S_z \right)$$

con S_x , S_y , e S_z gli operatori di spin $\mathcal{H} \to \mathcal{H}$.

Prendiamo adesso $\vec{B} = B\vec{e}_z$ (allora $B_x = B_y = 0$ e $B_z = B \in \mathbb{R}$).

- a. Calcolate le evoluzioni temporali $e^{-itH} |+_z\rangle$ e $e^{-itH} |+_x\rangle$.
- **b.** Consideriamo un esperimento di Stern-Gerlach del tipo 6, ma prima di riunire i raggi creando una nuova sovrapposizione, il raggio che corrisponde allo stato $|+_x\rangle$ passa per il campo magnetico $\vec{B} = B\vec{e}_z$ per T secondi (vedere il grafico).



È possibile trovare $T \in \mathbb{R}$ tale che le intensità finali sono $I_{+,z} = 0$ e $I_{-,z} = 100\%$? Se no, qual'è il massimo raggiungibile per $I_{-,z}$, e con quale scelta di $T \in \mathbb{R}$?