
Hamiltonian Mechanics Programming Lab

(Sistemi Hamiltoniani 1 Laboratorio)

Niels Benedikter, Università degli Studi di Milano
niels.benedikter@unimi.it

February 22, 2023

Contents

1 Introduction 1
1.1 Introduction to Linux . 1
1.2 Programming in C . 2

1.2.1 The gcc compiler & makefiles 3
1.3 The Mizar library for scientific plotting 6

2 Numerical solutions of Hamiltonian equations 6
2.1 The Forward Euler Algorithm . 6
2.2 The Leapfrog Algorithm . 6
2.3 Poincaré Sections for Linearly Coupled Harmonic Oscillators . . 6
2.4 The Hénon–Heiles model . 8
2.5 Symplectic Methods by the Splitting Construction 11

2.5.1 The SABA3 Algorithm 15
2.5.2 Correctors to Splitting Algorithms 16
2.5.3 Alternative Splitting . 17

3 Computer algebra with polynomials 18
3.1 Complex Numbers in C . 18
3.2 Arrays in C . 18
3.3 . . . or by recursion (advanced programming challenge, optional) . 19

4 The Method of Poincaré for the Construction of First Integrals 19
4.1 Implementation for the non–resonant Hénon–Heiles model 22
4.2 Analysis of truncated first integrals along leapfrog trajectories . . 24
4.3 Poincaré sections vs. contour lines of first integrals 24

5 Possible Calendar for a Semester of 12 Weeks 24

1 Introduction

1.1 Introduction to Linux

I recommend Linux Mint (https://linuxmint.com/), which is easy to use and
to install. Read the instructions provided on the Linux mint page or just do an

1

mailto:niels.benedikter@unimi.it
https://linuxmint.com/

internet search for, e. g., “linux mint installation”. You have 3 different options
to choose from:

• Direct installation on your computer: download Linux Mint, create a
bootable usb pen drive, boot from the USB drive, click ”install”, follow
the instructions. You can keep your Windows/Mac operating system in
parallel, so that the computer will ask which system to start when being
switched on. Attention: do not choose to overwrite your current system
unless you really want to and have a backup of all your data!

• If you are worried about interfering with your current system: install
https://www.virtualbox.org/ in your Windows or MacOS. This simu-
lates a computer, in which you can then install Linux Mint.

• You can also install Linux on an external usb drive. You will need a
bootable linux usb key (as in the installation instructions above) and an
additional empty USB drive (minimum 4 gigabyte, better larger). You
find the procedure explained here: https://www.fosslinux.com/41285/
install-complete-linux-mint-on-a-usb-drive.htm

Get used to your new operating system before the first lab. At least figure out
how to create a folder, how to create and edit a text file, and how to open a
terminal. If you need additional software, you can install it for free from the
“Software Manager” you find in the main menu.

Practical task: Set up a linux system and get used to it.

1.2 Programming in C

We use pure C of standard C99. No C++. Here is a very basic example reading
input from the terminal and writing to the terminal. With #include <stdio.h>

in the first line of the program we tell the compiler to include the standard
library functions for input and output, in particular to and from the terminal.

#include <stdio.h>

float add(float x, float y) // define a function

{

float output;

output = x + y;

return output;

}

int main()

{

float n1, n2, n3; // define variables

printf("Enter a number: "); // print message to terminal

scanf("%f", &n1); // read an integer, store in n1

printf("Enter a number: ");

scanf("%f", &n2);

2

https://www.virtualbox.org/
https://www.fosslinux.com/41285/install-complete-linux-mint-on-a-usb-drive.htm
https://www.fosslinux.com/41285/install-complete-linux-mint-on-a-usb-drive.htm

n3 = add(n1,n2);

printf("The sum is %f\n", n3);

return 0; // close the program

}

Note that printf uses directly the value of the variable (here n3) whereas scanf
needs the address of the variable where to store the input. The address of a
variable is obtained writing, e. g., &n2. The address of a variable is called a
pointer in C because it points to the memory location of the variable. The
codes for printing and reading from/to different kinds of variables, such as %f
for floating point numbers (real numbers) depends on the kind of variable. Just
search on the internet for scanf or printf to find tables. Note that printf and
scanf may use different codes for the same type of variable.

Another example using a for loop to repeat some computation many times.
The command for(A;B;C) contains three arbitary commands; command A is
called when the loop is first entered; command B is checked after every iteration
to decide if we can already terminate the loop; command C is applied at every
iteration and usually used to increase some sort of counter.

#include <stdio.h>

int main()

{

float rate;

float infected;

infected = 1.0;

printf("Enter the infection rate: ");

scanf("%f", &rate); // read rate of infections

for (int i =1; i <= 30; i = i +1)

{

infected = infected * rate;

printf("On the day %d: %f infected people.\n", i, infected);

}

return 0;

}

That’s it for the moment. Save the code in a textfile with ending “.c” and in
the next section we’ll take a look at how to compile and execute your program.

Practical task: Refresh your knowledge of the C programming language.
Search on the internet to identify your favorite reference webpages on program-
ming in C.

1.2.1 The gcc compiler & makefiles

Open a terminal. Type

sudo apt install gcc

3

and hit return. You will be asked to enter your password, then the files will be
automatically downloaded and installed (when asked for permission, hit “y”).
Repeat with

sudo apt install libc6-dev

sudo apt install make

sudo apt install xterm

The first command installs libraries needed for programming (whatever those
are, it doesn’t matter to us). The second command installs a program called
“make” which reduces the amount of typing of compiler commands. The last
command installs a particular terminal program required by the scientific plot-
ting library Mizar that we are going to use.

The gcc compiler A compiler is a program that turns your source code (a
text file with ending .c) into a program that can be executed by the computer.
We use the standard compiler gcc. A standard call to the compiler could be
the following line on the terminal, executed in the folder where our sourcecode
pandemic.c is saved:

gcc -std=c99 -Wall -Wextra -o euler euler.c -lm

The first word is the name of the program we execute (the compiler gcc). Then
-std=c99 indicates that we use the C99 standard of the programming language
C (a fairly modern version of C). The options -Wall and -Wextra make sure
we see all possible warning about possibly bad code and helps us avoid strange
behavior of the resulting program. Next, -o euler tells the compiler to output
the compiled program with the name “euler”. Then we give the name of the
source code euler.c. Finally -lm tells the compiler to include (“link”) the
functionality of the mathematics library of C.

The compiler will now either produced errors and warnings, or stay silent (if
your code is correct) and create the file “euler”. Your program is now ready to
execute typing on the terminal the command

./euler

and hitting return.

Practical task: Make sure you can compile and execute the two simple
programs given above.

makefiles To reduce the amount of compiler commands that one has to type
(they can get very long and complicated) there is a tool called “make”. Simply
use a text editor to create a file called “makefile”. You may copy and paste the
following content.

MIZAR

INCLUDE = -I ${MIZAR}

MIZCOM = ${MIZAR}/libmizarcom.a ${MIZAR}/libtek.a

MIZCOMGIF = ${MIZAR}/libmizarcom.a ${MIZAR}/libtek.a ${MIZAR}/libmizargif.a

MIZCOMPNG = ${MIZAR}/libmizarcom.a ${MIZAR}/libtek.a ${MIZAR}/libmizarpng.a

MIZCOMJPG = ${MIZAR}/libmizarcom.a ${MIZAR}/libtek.a ${MIZAR}/libmizarjpg.a

4

MIZINTTEK = ${MIZAR}/libmizarint.a ${MIZAR}/libtek.a

MIZFIL = ${MIZAR}/libmizarfil.a

MIZFILGIF = ${MIZAR}/libmizarfil.a ${MIZAR}/libmizargif.a

single_ho: single_ho.c

gcc -Wall ${INCLUDE} -std=c99 -g -o single_ho single_ho.c ${MIZINTTEK} -lm -lgd

multi_ho: multi_ho.c

gcc -Wall ${INCLUDE} -std=c99 -g -o multi_ho multi_ho.c ${MIZINTTEK} -lm -lgd

all: single_ho multi_ho

clean:

rm -f single_ho

rm -f multi_ho

Important: every make rule (such as single_ho) needs its command line (the
line following it, with the gcc command) start with a true tabulator and not
with a number of spaces! In your texteditor, you may need to go to the options
or settings first and disable “tab as spaces”.

Some further explanation on the content (marked in yellow – simply replace
or add an extra make rule):

• MIZINTTEK will be interactive mode, after having compiled your pro-
gram by typing make single_ho or make all, you may run the program
now with

xterm -t -e ./single_ho

You do not need the -lgd option for the compiler in this case.

• MIZCOMPOS creates ps files, which is good for use for example in LATEX
documents and for print documents because it is a vector format. It can
afterward also be converted to a pdf with ps2pdf on the commandline
(very convenient for inclusion in LATEX files).

• MIZCOMPNG and likewise MIZCOMGIF, MIZCOMJPG. These require
linking the library with the -lgd at the end of the compiler instruction,
otherwise you get a lot of error messages in trying to compile. Further-
more, if there is an error mentioning deferr, check that in the top lines,
you included the part ${MIZAR}/libtek.a. (COM stands for combined
mode, including interactivity, thich therefore requires the Tektronix ter-
minal, so has to include also libtek.)

• Alternatively, you can also create gifs and other pictures using MIZFIL,
which will create a file grafic.dat. Then on the commandline you run
the following commands to convert the dat–file into a gif–file:

$MIZAR/mizargif grafic.dat

FIN

Y

5

Animations For animations, it is convenient to use the functions pagin();
and quadro(); of mizar.

Gif–files can be joined to an animation using for example the program gifsicle
(see Animazioni.txt from the mizar documentation).

1.3 The Mizar library for scientific plotting

Practical task: Install Mizar. Run the tests. Look at their source code and
the make files to get an idea of how Mizar is practically used. Experiment with
modifications to the Mizar commands in the source code.

2 Numerical solutions of Hamiltonian equations

2.1 The Forward Euler Algorithm

2.2 The Leapfrog Algorithm

2.3 Poincaré Sections for Linearly Coupled Harmonic Os-
cillators

Analytical solution of the linearly coupled harmonic oscillators As
background knowledge and to compare with and check the numerical results we
recall the analytical solution, using the power of canonical transformations in
the Hamiltonian formalism. So consider again the Hamilton function

H(q, p) =
ω0

2
(p20 + q20) +

ω1

2
(p21 + q21) + (q0 − q1)2 .

We start with the scaling transformations(
p̃0
p̃1

)
=

(
(ω0/ω1)

1/4 0
0 (ω1/ω0)

1/4

)(
p0
p1

)
and (

q̃0
q̃1

)
=

(
(ω1/ω0)

1/4 0
0 (ω0/ω1)

1/4

)(
q0
q1

)
.

We obtain a Hamiltonian that is symmetric under exchange of the two oscilla-
tors:

H(q̃, p̃) =

√
ω0ω1

2

(
p̃20 + p̃21

)
+Aq̃20 +Bq̃21 + Cq̃0q̃1

where

A =
ω
3/2
0

2ω
1/2
1

+
ω
1/2
0

ω
1/2
1

, B =
ω
3/2
1

2ω
1/2
0

+
ω
1/2
1

ω
1/2
0

, C = −2 .

Now note that the expression p̃20+ p̃
2
1, having the form of an ℓ2–norm (squared),

is invariant under all transformations U ∈ SO(2) acting by(
˜̃p0
˜̃p1

)
:= U

(
p̃0
p̃1

)
.

6

In order to obtain a canonical transformation we also transform at the same
time (

˜̃q0
˜̃q1

)
:= U

(
q̃0
q̃1

)
.

In matrix notation we have

Aq̃20 +Bq̃21 + Cq̃0q̃1 =
(
q̃0 q̃1

)(A C/2
C/2 B

)(
q̃0
q̃1

)
.

The matrix being symmetric, it can be diagonalized by a U ∈ SO(2):

UT

(
A C/2
C/2 B

)
U =

(
λ1 0
0 λ2

)
.

That way we just get two decoupled harmonic oscillators:

H(˜̃q, ˜̃p) =
ω0ω1

2

(
˜̃p20 + ˜̃p21

)
+ λ1 ˜̃q

2
0 + λ2 ˜̃q

2
1 .

The eigenvalues λ1 and λ2 are most easily obtained solving the system

λ1λ2 = det

(
A C/2
C/2 B

)
= AB − C2

4

λ1 + λ2 = tr

(
A C/2
C/2 B

)
= A+B .

One finds

λ1,2 =
A+B

2
± 1

2

√
(A−B)2 − C2 .

Inverting the two transformations (the scaling and the linear transformation
with U) we can compute the oscillator motions as a superposition of a low
frequency and a high frenquency oscillation. (Attention, λ1 and λ2 are not
directly the frequencies because there is an additional prefactor of the kinetic
term.)

Poincaré sections In Poincaré sections we may observe the following behav-
ior. Poincaré sections can be used to detect periodic orbits.

• If a trajectory produces a finite number of points in the Poincaré section,
the motion is periodic (after a finite number of “rounds” the particle has
returned to its initial phase-space coordinates).

• If the motion is quasiperiodic with incommensurable frequencies we see a
curve, made up from a dense set of points in which the particle returns to
the surface of the Poincaré section. This is caused by the frequencies of
doing one round not being in a rational relation.

• Finally we may see completely filled areas: this is the signature of chaotic
behavior. It does not happen for the linearly coupled oscillators, but we
will later observe it in the Hénon–Heiles model.

Poincaré sections are particularly suited to “detecting” periodic orbits, for ex-
ample in the Lotka–Volterra model [Tuc02]. For a further discussion of the
qualitative behavior of Poincaré sections, I recommend [Gio20, Capitolo 8].

7

2.4 The Hénon–Heiles model

While at Princeton in 1962, Michel Hénon and Carl Heiles worked on the non-
linear motion of a star around a galactic center with the motion restricted to a
plane. In 1964 they published an article titled “The applicability of the third
integral of motion: Some numerical experiments”. Their original idea was to
find a third integral of motion in a galactic dynamics. For that purpose they
took a simplified two-dimensional nonlinear axi-symmetric potential and found
that the third integral existed only for a limited number of initial conditions. In
the modern perspective the initial conditions that do not have the third integral
of motion are called chaotic orbits (and we aim to see them in our numerical
experiments as the main qualitative difference to the linearly coupled harmonic
oscillators). [Wik22]

The Hénon–Heiles model consists of two harmonic oscillators with a non–
linear coupling, i. e., the Hamilton function is not quadratic in position and
momenta. In fact

H(q, p) =
ω0

2

(
p20 + q20

)
+
ω1

2

(
p21 + q21

)
+ q20q1 −

1

3
q31 . (2.1)

We observe that, if ω0, ω1 > 0, then if the initial energy E0 := H(q0, p0, q1, p1)
is strictly less than the critical energy (or escaping energy)

Ecrit := min

{
ω3
0

24
+
ω2
0ω1

8
,
ω3
1

6

}
,

then the Poincaré section remains inside the bounded domain in the (p1, q1)–
plane defined by

ω1

2

(
p21 + q21

)
− 1

3
q31 ≤ E0 . (2.2)

For the following it will be convenient to always plot the contour of this domain
to help with orientation in the numerical plots. It is also convenient to choose
the initial energy as a fraction of the critical energy.

Practical task: Show (by pen and paper computation, without computer)
that Eq. (2.2) indeed constraints the Poincaré sections to a bounded domain in
the plane. Why so?

Poincaré sections for the Hénon–Heiles model We repeat the exercise
done in the last section for the linearly coupled harmonic oscillators:

(i) fix an initial energy as a fraction of the critical energy, e. g., E0 = Ecrit

100 ,

E0 = Ecrit

10 , E0 = Ecrit

1000 , E0 = 0.024Ecrit, E0 = 0.039Ecrit (play with
different and similar values);

(ii) fix a surface in phase space (call it Σ) as the plane defined by q0 = 0;

(iii) choose the initial value of q0 on the plane, i. e., q0 = 0;

(iv) define q1 and p1 from the two coordinates of a mouse click (in Mizar, use
the function utcur);

(v) determine p0 by solving the equation E0 = H(0, p0, q1, p1);

8

Figure 1: Left: Poincaré sections for the resonant (i. e., ω0 = ω1 = 1) Hénon–
Heiles model with E0 = 0.5Ecrit (where the critical energy is found to be Ecrit =
0.1667). Right: Same with E0 = 0.8Ecrit; chaotic trajectories appear. (Try to
zoom in to see details.)

(vi) set the size of utarea so that the plot contains all the domain permitted
by the energy condition Eq. (2.2);

(vii) follow a leapfrog trajectory to a very large time and draw a point at
coordinates (q1, p1) every time the surface Σ is crossed in forward direction
(say, whenever in the leapfrog step a change of sign from u0 ≤ 0 to u0 > 0
occurs).

Practical task: Plot the Poincaré sections of the Hénon–Heiles model both for
the resonant and the non–resonant case, experimenting with different fractions
of the critical energy for E0. Observe the emergence of chaotic behavior. What
qualitative difference do you notice in the emergence of chaotic trajectories
between the resonant and non–resonant case?

In Fig. 1 we display the result for the resonant Hénon–Heiles model, in Fig. 2
for the non–resonant case.

An improved algorithm for Poincaré sections [Hen82, Tuc02] Observe
that our algorithm for finding the intersection of the trajectory with the surface
Σ is not very precise: in fact we may have gone up to a distance h (length of a
time step) beyond the surface, where we then detect the change of sign in q0.
So far we have simply taken the values (q1, p1) found there and plotted them
on the q0 = 0–plane. One way of improving this is by linearly interpolating
between the (q1, p1) of the previous step and the current step to obtain a guess
for the position on the q0 = 0–plane. A further improvement is obtained by the
algorithm we shall discuss now.

9

Figure 2: Left: Poincaré sections for the non–resonant (i. e., ω0 = 1 and

ω1 =
√
5−1
2) Hénon–Heiles model with E0 = 0.5Ecrit. Right: Same with

E0 = 0.99Ecrit (notice the higher fraction of the critical energy).

Consider a general system of first–order ordinary differential equations

ẋ1 = f1(x1, x2, . . . , xN)

...

ẋN−1 = fN−1(x1, x2, . . . , xN)

ẋN = fN (x1, x2, . . . , xN) .

Moreover we consider a surface Σ defined by an equation S(x1, x2, . . . xN) = 0;
for simplicity S(x1, x2, . . . xN) = xN−a for some a ∈ R (which in our application
may be specialized even further to a = 0).

We transform the differential equations such that xN becomes the new in-
dependent variable, replacing the time variable t. To do so we compute

dt

dxN
= (ẋN)−1 =

1

fN (x1, . . .)
.

If you implement this procedure, remember to check for fN (x1, x2, . . .) = 0; if
this should by coincidence be encountered resort to linear interpolation or the
naive algorithm (change of sign in q0 as above) to find the intersection point
with Σ.

Let us assume that usually fN (x1, . . .) ̸= 0. Then we can proceed by the
chain rule to get the new system of equations

dx1
dxN

=
dx1
dxN

dt

dxN
=

f1(x1, x2, . . .)

fN (x1, x2, . . .)

...

dxN−1

dxN
=

dxN−1

dxN

dt

dxN
=
fN−1(x1, x2, . . .)

fN (x1, x2, . . .)
.

(2.3)

Our new algorithm is new as follows:

10

(i) As before, integrate the leapfrog trajectory until we dected a change of
sign in S(x1, x2, . . .).

(ii) Save the last found value of S(x1, . . .), calling it, e. g., Sf.

(iii) Make a copy of the last obtained values of the phase space variables.

(iv) To the copy of the phase space variables, apply a single step with the
evolution Eq. (2.3) for a distance ∆xN = −Sf. This lands us exactly on
the surface Σ. (Since this step is only executed once we do not worry
about accumulation of errors, so this step can simply be a forward Euler
step.)

(v) Plot the obtained values for (q1, p1), then revert to the leapfrog trajectory
and continue the evolution.

Practical task: Implement the improved algorithm to plot again the Poincaré
sections of the Hénon–Heiles model.

2.5 Symplectic Methods by the Splitting Construction

In the following we discuss the splitting construction, a general method to con-
struct symplectic algorithms. As a particular case we will re–derive the Leapfrog
algorithm. The best reference for this section is [LR01].

We write x = (p, q) ∈ R2n, and the Hamiltonian equations as

dx

dt
= {H,x} = LHx .

Here {, } denotes the Poisson bracket and the linear operator LH is defined by
its action on functions f on phase space, LHf := {H, f}.

By abstract functional calculus, the solution of the Hamiltonian equations,
i. e., the Hamiltonian flow can be written as

x(t) = etLHx0 =

∞∑
n=0

tn

n!
Ln
Hx0 .

The representation by the exponential series is not very useful in applications.
In the following we will therefore consider systems with Hamilton function

H(p, q) = A(p, q) +B(p, q)

with the assumption that A and B separately generate a Hamiltonian flow that
can be computed analytically.

Consider now a time step h ∈ R. To construct a splitting method, we try to
find coefficients c1, d1, . . . , cn, dn ∈ R such that

ehLH = ec1hLAed1hLB · · · ccnhLAednhLB +O(hk) ,

where the order k of the error term should be as high as possible.
As a composition of symplectic flows, the numerical time step

S(h) := ec1hLAed1hLB · · · ccnhLAednhLB

11

is automatically a symplectic flow (and this is exact, not just as an approxima-
tion).

Dear friend Wollstein!
If you receive these lines, we (three) have solved the problem in a different
manner — in the manner of which you have constantly tried to dissuade
us. The feeling of security that you have predicted for us once we would
overcome the difficulties of the move, is still eluding us; on the contrary,
Endenich may not even be the end!
What has happened in recent months against the Jews evokes justified
fear that they will not let us live to see a more bearable situation.
(..)
I am sorry that we cause you yet more effort beyond death, and I am
convinced that you are doing what you can do (which perhaps is not very
much). Forgive us our desertion! We wish you and all our friends to
experience better times.
Your truly devoted
Felix Hausdorff

Farewell letter of Felix Hausdorff 1942

Example: The Euler–Cromer (semi–implicit Euler) integrator (A fur-
ther reference for this example is [DR05].) We consider a Hamilton function

H(p, q) = T (p) + V (q)

and split as
A := T , B := V .

(We may think of T (p) = p2/(2m) and V (q) a potential, with the obvious
generalization to more than one particle.) We try to write

ehLH = ec1hLT ed1hLV +O(hk) .

To compute the coefficients c1 and d1, we use the Baker–Campbell–Hausdorff
(BCH) formula1, generalizing the exponential law to non–commuting linear
operators (you may also think of matrices) X and Y :

eXeY = eX+Y+ 1
2 [X,Y]+ 1

12 [X,[X,Y]]− 1
12 [Y,[X,Y]]+... . (2.4)

The exponent on the right hand side is a formal series which in general may
not be convergent. Its explicit form is quite complicated, but in applications
frequently only the first few terms (as given here) are needed.

Let’s apply the BCH formula to our concrete case:

ec1hLT ed1hLV = ec1hLT+d1hLV + 1
2 c1d1h

2[LT ,LV]+O(h3) .

We choose c1 = d1 = 1, so that

c1hLT + d1hLV = h(LT + LV) = hLT+V = hLH .

1Felix Hausdorff was professor at the University of Bonn. He is considered to be one of the
founders of modern topology and who contributed significantly to set theory, measure theory,
and functional analysis. Being Jewish, in 1942 he committed suicide to evade deportation.

12

Moreover, acting on any phase space function f , by use of the Jacobi identity
we have

[LT , LV]f = LTLV f − LV LT f = {T, {V, f}} − {V, {T, f}}
= {{T, V }, f} = L{T,V }f .

We conclude that

ec1hLT ed1hLV = ehLH+h2

2 L{T,V }+O(h3) .

We are working on the re–derivation of an Euler algorithm, i. e., an integrator
of first order (i. e., which to first order in h agrees with the exact flow). This is

achieved having hLH in the exponent, so we want to treat h2

2 L{T,V } as an error
term, outside the exponent as in Eq. (2.4). To obtain this form, we may use the
dual BCH/Zassenhaus formula:

eX+Y = exeY e−
1
2 [X,Y] · · ·

Applied to separate the O(h2)–terms from the exponent, we get

ehLH+h2

2 L{T,V }+O(h3) = ehLHe
h2

2 L{T,V }+O(h3)e−
1
2 [hLH ,h

2

2 L{T,V }]

= ehLH (1 +
h2

2
L{T,V } +O(h3))(1 +O(h3))

= ehLH +O(h2) .

So we have shown that

ehLH = ehLT ehLV +O(h2) ,

as expected the obtained algorithm agrees with the exact flow to first order and
has an additive error term of order h2.

Let us complete the discussion by showing the explicit implementation of the
algorithm. In fact, the flow generated by the Hamiltonian function V may be
easily computed: just derive the Hamiltonian equations and observe that they
can be explictly solved, corresponding to a “kick” to the momentum with the
force derived from V . In fact, one finds the analytic solution (with initial data
(qn, pn) moving by a time intervall h to the next “step”)

ehLV

(
qn
pn

)
=

(
qn

pn − V ′(qn)h

)
=:

(
qn
pn+1

)
.

Instead the Hamiltonian function T (p) = p2/(2m) generates the force-free move-
ment of the particle, i. e.,

ehLT

(
qn
pn+1

)
=

(
qn + pn+1

m h
pn+1

)
=:

(
qn+1

pn+1

)
.

The combination of these two steps is precisely the Euler–Cromer algorithm.

From the construction we easily understand that every splitting algorithm
comes with a conserved energy that is a small deviation of the original Hamil-
tonian. In fact, we saw that

ehLT ehLV = ehLH+h2

2 L{T,V }+O(h3)

= e
hL

H+h
2
{T,V }+O(h3) .

13

That is,

H ′ := H +
h

2
{T, V }+O(h3)

is the conserved Hamiltonian. (Attention: the expansion to higher orders may
again only be a formal, non–convergent, series.) From this example we also see
that a k–th order integrator has a conserved Hamiltonian H ′ differing up to
k–th order from H (as in the Euler–Cromer case the correction is of order h.)

To be even more specific, the construction of the conserved Hamiltonian
of the Euler–Cromer integrator can be written out for the harmonic oscillator
H(p, q) = p2 + q2, splitting as T (p) = p2 and V (q) = q2:

{T, V } = {p2, q2} = ∂p2

∂q

∂q2

∂p
− ∂q2

∂q

∂p2

∂p
= −4pq .

Therefore

H ′ = p2 + q2 +
h

2
(−4pq) +O(h2)

is conserved under the application of the Euler–Cromer iteration.

Example: The Leapfrog (Verlet) integrator (A further reference for this
example is [DR05].) The Verlet integrator is obtained using the splitting

e
h
2 LV ehLT e

h
2 LV . (2.5)

Explictly, the successive execution of these three flows corresponds to the steps
(where F is the force corresponding to the potential V)

pn+ 1
2
= pn +

h

2
F (qn)

qn+1 = qn + hpn+ 1
2

pn+1 = pn+ 1
2
+
h

2
F (qn+1) .

If the step pn+1 is eliminated to directly go from pn+ 1
2
to pn+ 3

2
, this is exactly

the Leapfrog algorithm.

Let us show again (as already done in Section 2.2), that this is a second
order integrator. We use the BCH formula twice to combine the three flows into
one exponent:

e
h
2 LV ehLT e

h
2 LV

= exp

(
h

2
LV + hLT +

1

2

[
h

2
LV , hLT

]
+O(h3)

)
e

h
2 LV

= exp

(
h

2
LV + hLT +

h

2
LV +

1

2

[
h

2
LV , hLT

]
+

1

2

[
h

2
LV + hLT +

1

2

[
h

2
LV , hLT

]
,
h

2
LV

]
+O(h3)

)
= exp

(
hLH +

h2

4
[LV , LT] +

h2

4
[LT , LV] +O(h3)

)
,

where we used [LV , LV] = 0. Since [LT , LV] = −[LV , LT] the second order
terms in the exponent cancel, and we find

e
h
2 LV ehLT e

h
2 LV = exp

(
hLH +O(h3)

)
.

14

So indeed Leapfrog is correct up to second order, i. e., there is no error term
of order h2. (The conversion of the O(h3) error term in the exponent into an
additive error outside the exponent is always easily obtained applying the first
order Zassenhaus formula, in fact independent of the concrete operators X one
finds exp(X +O(hk)) = exp(X) +O(hk).)

By retaining all terms of order h3 in the BCH unification of the three flows
into one exponent, the reader may derive the order–h2 correction to H yielding
a conserved Hamiltonian H ′ for the Leapfrog algorithm.

2.5.1 The SABA3 Algorithm

Let H = A+B. As an additional requirement (already satisfied by the Leapfrog
algorithm), in the following we consider only the construction of symmetric
integrators (meaning that time reversal corresponds to an inverse step, S(−h) =
S(h)−1). This means that we use an ansatz of the form

S(h) = ed1hLBec2hLAed2hLB · · · ednhLBecn+1hLAednhLB · · · ed2hLBec2hLAed1hLB .

To motivate the SABA3 algorithm, let us first attempt a naive push of the
splitting construction to obtain an order–h4 integrator. We take n = 2, use
the BCH formula to write the product of flows as a single exponent, and then
demand that c2, c3, d1, d2 ∈ R are chosen such that the order–h terms sum up
to H while all terms of order h2, h3, and h4 cancel. This leads to the following
equations connecting the coefficients:

c3 + 2c2 = 1

d1 + d2 =
1

2
1

12
− 1

2
c2 +

1

2
c22 + c2d1 − c22d1 = 0

− 1

24
+

1

4
c2 − c2d1 + c2d

2
1 = 0 .

Solutions to this system of equations can be found by numerical search. It turns
out that the system has a unique real solution, namely

d1 ≃ 0.675 , c2 ≃ 1.3512 , d2 ≃ −0.1756 , c3 ≃ −1.7024 . (2.6)

So this is in principle a feasible approach. Unfortunately, this turns out to not
work very well in applications: some time steps get negative, others compensate
this by getting rather large (just look at c3 ≃ −1.7024). With some steps getting
large, in actual numerical computations often the Leapfrog method (second
order) yields better results than this fourth–order method.

So is there any way we can avoid the emergence of negative steps? Since
Eq. (2.6) is the unique solution, we have to modify the whole approach to permit
more freedom in the choice of parameters. This is exactly the purpose of the
SABA3 integrator, which we will discuss now.

The key idea is to think of a Hamiltonian of the form

H = A+ εB ,

15

where ε is to be thought of as a small parameter. Again by the BCH formula
we obtain

S(h) = ed1hLεBec2hLAed2hLεBec3hLAed2hLεBec2hLAed1hLεB = ehK ,

where notation
Lie deriva-
tives

K = k11A+ εk12B + hεk21{A,B}+ h2εk31{A, {A,B}}
+ h2ε2k32{{A,B}, B}+O(h3ε+ h3ε2 + h3ε3 + h4) .

The coefficients kij are functions of the c– and d–parameters. If we demand
cancellation up to second order in h2, this yields the conditions

k21 = 0 , k31 = 0 , k32 = 0 .

To get a larger freedom in the choice of parameters, we decide to treat ε2–terms
as already so small that we may ignore them. So we demand only to cancel
ε–terms up to the desired order in h, i. e., to second order in h we demand only

k21 = 0 , k31 = 0 , (2.7)

and k32 remains free. It turns out that now one can indeed find a solution by
positive parameters ci and dj . This way one obtains the SABA3 integrator : inverted

role of A,
BS(h) = ec1hLAed1hLεBec2hLAed2hLεBec2hLAed1hLεBec1hLA

c1 =
5−
√
15

10
, c2 =

√
15

10
, d1 =

5

18
, d2 =

4

9
.

(2.8)

The error term is O(h6ε+ h2ε2). This algorithm works quite well for practical
purposes.

Practical task: Consider the simple pendulum

H(p, q) = p2 + ε(1− cos θ) , θ ∈ [−π, π) .

Split as H = T + V , where T = p2, and implement the SABA3 integrator to
plot the phase space evolution for ε = 1 and ε = 1

10 . By playing with the
parameters, can you provoke a visible difference in the plots compared to the
Leapfrog method?

Practical task: Implement SABA3 for the harmonic oscillator H = p2 + q2,
T = p2, with fixed ε = 1. Evolve up to a fixed time t, subtract the analytical
solution and make a logarithmic plot of the difference as a function of h. The
logarithmic plot is well suited to read off the exponent of the error term. Show
that the error of the SABA3 method, at fixed epsilon, is of second order in the
step size h.
(This is the same task we did in Section 2.2 to verify that Leapfrog is a second
order integrator.)

2.5.2 Correctors to Splitting Algorithms

We now discuss how to improve the order of the error for a splitting algorithm
such as SABA4. The recommended reference for this is [LR01, Section 10].

16

Hypothesis: The Hamiltonian is of the form H = A + εB, where A is
quadratic in the momenta and independent of the positions (e. g., A = T (p) =
p2

2m) and B depends only on the positions (e. g., B = V (q)).

If this hypothesis is satisfied, we can compute the double Poisson bracket
{{A,B}, B} explicitly and find that it is a function that depends only on q.
Thus {{A,B}, B} may also be considered as a Hamiltonian that generates an
explicitly known flow, namely a force just as the potential V (q).

So let’s recall that SABA3, written in a single exponent by using the BCH
formula, is the flow

S = ehK K = k11A+ εk12B +((((((hεk21{A,B}+(((((((((
h2εk31{A, {A,B}}

+ h2ε2k32{{A,B}, B}+O(h3ε+ h3ε2 + . . .)

The cancelled terms on the first line are, by the choice of c– and d–coefficients
as demanded in Eq. (2.7), exactly zero in the SABA3 method. The biggest non–
vanishing error term is the term on the second line, i. e., h2ε2k32{{A,B}, B}.

The corrector is an additional iteration step using the flow generated by
{{A,B}, B} to cancel this term. In fact, we define the corrected time step as

Scorr := e−h3ε2 c
2L{{A,B},B}Se−h3ε2 c

2L{{A,B},B} with c := k32 . (2.9)

For SABA3 the explicit choice is c = 54−13
√
15

648 . In practical applications we
often have ε = 1 instead of a really small perturbation parameter.

Practical task: Implement SABA3 with corrector for the harmonic oscillator.
Make a logarithmic plot of the global error as a function of step size h. Compare
the result to Leapfrog and SABA3+corrector: the error is now found to be of
fourth order.

2.5.3 Alternative Splitting

Another possibility to improve the numerical method is to use a different split-
ting. In fact there is no deeper reason why to choose H(p, q) = T (p) + V (q)
except that both T and V generate a flow that has an explicit formula that we
can implement. In general we can also split H(p, q) = A(p, q) +B(p, q) as long
as we have analytical expressions for the flows generated by LA and LB . The
typical choice is of A as a quadratic Hamiltonian (i. e., a system of harmonic
oscillators) and B a remaining interaction.

A natural application is the Hénon–Heiles model: we can write

H(p, q) = A(p, q) +B(q)

A(p, q) =
ω0

2

(
q20 + p20

)
+
ω1

2

(
q21 + p21

)
B(q) = q20q1 −

1

3
q31 .

The flow ehLA is just the analytical solution of two decoupled harmonic oscilla-
tors. The flow ehLB is just a force kick, where the partial force is to be computed
from the potential B(q0, q1).

17

Practical task: Implement the Leapfrog–like second order splitting

S = e
h
2 LAehLBe

h
2 LA

with the new choice of A and B. Use this splitting to draw the Poincaré sections
of the Hénon–Heiles model again. (In order to not mix up too many things in
one program you may use simple linear interpolation for the Poincaré sections,
not the advanced algorithm we discussed at the end of Section 2.4.)

3 Computer algebra with polynomials

In the lab we will first practice the following methods with polynomials of a
single complex variable, then generalize to polynomials of four variables (repre-
senting two momenta and two positions as in the Hénon–Heiles model). In this
theory section I directly explain the necessary programming techniques to deal
with polynomials of more than one variable.

We need functions to do (algebraically!) the following operations with poly-
nomials in four variables and complex coefficients:

• addition of polynomials

• multiplication of a polynomial with a complex number

• multiplication of two polynomials

• partial derivatives of polynomials

• evaluation

• output as a human–readable string

• Poisson brackets, obtained as a combination of derivative, multiplication,
and a difference (multiplication by −1 and sum)

Notice that Poisson brackets of polynomials have the property that

{cubic, quadratic} = cubic , {cubic, cubic} = quartic

and so on, so the method of Poincaré discussed below will lead to a growing
degree of the polynomials. In our program we will fix (once and for all at the
beginning, for example as a macro) some degree (say, 20 for each variable) that
is sufficiently high for the number of Poincaré iterations we intend.

3.1 Complex Numbers in C

string operations.

3.2 Arrays in C

treating as pointer!

18

3.3 . . . or by recursion (advanced programming challenge,
optional)

explain and show a little bit of code

4 The Method of Poincaré for the Construction
of First Integrals

Consider a Hamilton function, with positions x = (x1, . . . , xn) and momenta y =
(y1, . . . , yn), consisting of a quadratic part and an interaction (with a coupling
constant ε ∈ R that we think of as small but will eventually take it as ε = 1):

H(x, y) = H0(x, y) + εH1(x, y)

where

H0(x, y) =
1

2

n∑
l=1

ωl(x
2
l + y2l) , ωl > 0 .

We assume that H1 is a homogeneuous polynomial of degree 3 as in the Hénon–
Heiles model, although this can be easily generalized. In the Hénon–Heiles
model, the number of particles is n = 2 and they move in one–dimensional
space R.

Diagonalization of the Hamiltonian H0 generating a linear evolution
By transforming to complex coordinates

xl =
1√
2
(ξl + iηl)

yl =
i√
2
(ξl − iηl)

 ←→


ξl =

1√
2
(xl − iyl)

ηl =
−i√
2
(xl + iyl)

(4.1)

we get

H0 =

n∑
l=1

ωlIl , Il := iξlηl .

The linear Hamiltonian system defined by H0 has n independent first integrals,
namely

Il =
1

2
(x2l + y2l) = iξlηl , l ∈ {1, 2, . . . , n} .

Poisson brackets are easy to compute also in complex coordinates:

Lemma 4.1 (Poisson bracket in complex coordinates). Given two differentiable
functions f and g of the momenta we have

{f, g} =
n∑

l=1

(
∂f

∂ξl

∂g

∂ηl
− ∂f

∂ηl

∂g

∂ξl

)
.

Proof. Considering the case n = 1 for simplicity we find

∂ξ

∂x
=

1√
2
=
∂η

∂y
,

∂ξ

∂y
= − i√

2
=
∂η

∂x
.

19

So using the chain rule we get

{f, g} = ∂f

∂q

∂g

∂p
− ∂g

∂q

∂f

∂p
=
∂f

∂x

∂g

∂y
− ∂g

∂x

∂f

∂y

=
∂f(ξ, η)

∂x

∂g(ξ, η)

∂y
− ∂g(ξ, η)

∂x

∂f(ξ, η)

∂y

=

(
∂f

∂ξ

∂ξ

∂x
+
∂f

∂η

∂η

∂x

)(
∂g

∂ξ

∂ξ

∂y
+
∂g

∂η

∂η

∂y

)
−
(
∂g

∂ξ

∂ξ

∂x
+
∂g

∂η

∂η

∂x

)(
∂f

∂ξ

∂ξ

∂y
+
∂f

∂η

∂η

∂y

)
=
∂f

∂ξ

∂g

∂η
− ∂f

∂η

∂g

∂ξ
.

The general case is easily obtained reinstating the indices.

Goal: construct a first integral of the interacting system H. We con-
struct a formal power series starting as a perturbation of an Il: the tentative
first integral of the interacting system should take the form

ϕ(x, y) = ϕ0(x, y) + εϕ1(x, y) + ε2ϕ2(x, y) + ε3ϕ3(x, y) + . . .

where, for some arbitrarily picked l,

ϕ0(x, y) = Il(x, y) ,

and ϕs is a homogeneous polynomial of degree s+ 2.

Poincaré’s construction We have to solve the Poisson bracket

{ϕ,H} = 0

for ϕ, iteratively order by order in ε:

{ϕ0 + εϕ1 + ε2ϕ2 + ε3ϕ3 + . . . , H0 + εH1} = 0 .

This yields the set of equations

at order ε0 : {ϕ0, H0} = 0

at order ε1 : {ϕ1, H0}+ {ϕ0, H1} = 0

at order ε2 : {ϕ2, H0}+ {ϕ1, H1} = 0

at order ε3 : {ϕ3, H0}+ {ϕ2, H1} = 0 .

Introducing the linear operator ∂ω (parametrized by ω = (ω1, ω2, . . .) the fre-
quencies appearing in H0) acting on polynomials or functions by

∂ωf := {f,H0}

we can write this system as

∂ωϕ0 = 0 , ∂ωϕs = {H1, ϕs−1} ∀s ∈ N \ {0} .

The first equation is satisfied by choosing ϕ0 = Il for some l. The second
equation, called homological equation, shows us how to obtain iteratively the
higher orders from the previously computed order (ϕs−1 is known, solve for ϕs).

Note that in our case, the Hénon–Heiles model, all involved functions are
polynomials, so that we can implement this construction as a symbolic compu-
tation on a computer with multi–variable polynomials.

20

Inversion of the Operator ∂ω. Unfortunately the operator ∂ω has a non–
trivial null space and is therefore not invertible (one can easily write down
homogeneuous polynomials ψ such that ∂ωψ = 0). However, in some cases
(such as the non–resonant Hénon–Heiles model), these do not appear, and on
the relevant subspace the operator ∂ω can be inverted. Explicit inversion is
achieved by diagonalizing it; this is achieved by using the complex coordinates
as follows:

Lemma 4.2 (Diagonalization of ∂ω). The linear operator ∂ω is diagonal over
the basis

ξjηk :=

n∏
l=1

ξjll η
kl

l ,

where j = (j1, j2, . . .) ∈ Nn and k = (k1, k2, . . .) ∈ Nn are multi–indices. One
has

∂ωξ
jηk = i⟨ω, j− k⟩ξjηk

with the Euclidean scalar product in Rn as

⟨ω, j− k⟩ :=
n∑

m=1

ωm(jm − km) .

Proof. Using Lemma 4.1, check that for any differentable function f of the
position and momenta we have

∂ωf =

n∑
m=1

iωm

(
ξm

∂

∂ξm
− ηm

∂

∂ηm

)
f .

One then computes

∂ωξ
jl
l η

kl

l = iωlξl
∂ξjll
∂ξl

ηkl

l − iωlηl
∂ηkl

l

∂ηl
ξjll

= iωljlξ
jl
l η

kl

l − iωlklξ
jl
l η

kl

l = iωl(jl − kl)ξjll η
kl

l .

The multi–index case follows easily.

Solving the Homological Equation We can therefore attempt to solve the
equation ∂ωϕ = ψ for ϕ as follows.

• transform the polynomial ψ into complex coordinates, i. e., expand in the
basis ξjηk:

ψ =
∑

j,k∈Nn

ψj,kξ
jηk .

• ψ = ∂ωϕ becomes, with ϕj,k to be determined:∑
j,k

ψj,kξ
jηk = ∂ω

∑
j,k∈Nn

ϕj,kξ
jηk (4.2)

=
∑

j,k∈Nn

ϕj,ki⟨ω, j− k⟩ξjηk . (4.3)

21

• If all factors i⟨ω, j − k⟩ ̸= 0 (we say that there are no resonances) then
the equation is solved by setting

ϕj,k :=
−i

⟨ω, j− k⟩
ψj,k .

In the following we are going to discuss the absence of resonances in the
non–resonant Hénon–Heiles model, so that this procedure in fact works.

Absence of Resonances in non–resonant Hénon–Heiles. We say that
the pair (j,k) is a resonance if

⟨ω, j− k⟩ = 0 .

Note that j − k ∈ Zn. Furthermore n = 2 in the Hénon–Heiles model. So if
ω1 ∈ Q and ω2 ∈ R \Q, then the only solution j− k ∈ Zn of ⟨ω, j− k⟩ = 0 is

j− k = 0 ⇔ j = k .

One may verify that this does not happen in the non–resonant Hénon–Heiles
model (theory to be discussed separately).

4.1 Implementation for the non–resonant Hénon–Heiles
model

The goal is to implement the operations in terms of polynomials usign computer
algebra. The relevant formulas are, according to Eq. (2.1), as follows:

H := H0 +H1 (ε = 1)

H0 :=
ω1

2
(y21 + x21) +

ω2

2
(y22 + x22) , ω1 := 1 , ω2 :=

√
5− 1

2

H1 := x21x2 −
1

3
x32 .

We pick as the starting point of our construction

ϕ0 = I1 .

With the complex coordinates as defined in Eq. (4.1) the model takes the form

H0 = ω1I1 + ω2I2 , I1 = iξ1η1 , I2 = iξ2η2

H1 =
1

22/3

(
ξ21ξ2 + ξ21iη2 − η21ξ2 − iη21η2 + 2iξ1η1ξ2 − 2ξ1η1η2

− 1

3
ξ32 − iξ22η2 +

1

3
iη32 + ξ2η

2
2

)
For the computation by hand the following two lemmata are useful. (Instead, for
the implementation on the computer it is easier to use Lemma 4.1 to compute
Poisson brackets!).

Lemma 4.3 (Poisson bracket expansion). For functions A,B,C we have

{AB,C} = A{B,C}+ {A,C}B .

22

Proof. trivial computation

Lemma 4.4 (Fundamental Poisson brackets in complex coordinates).

{ξ, ξ} = 0 = {η, η} , {η, ξ} = −1 , {ξ, η} = 1 .

Proof. trivial computation

Repeatedly expanding the Poisson brackets until the fundamental ones can
be used, one may also compute by hand that

{H1, iξ1η1} =
1√
2

(
iξ21ξ2 − η2ξ21 + iξ2η

2
1 − η2η21

)
. (4.4)

Check that you get this right!

Comment: One can in principle also use this combinatorial approach to do
the computer algebra of Poisson brackets by repeated expansion using Lemma 4.3
and Lemma 4.4. However, it is easier to not implement Poisson brackets by ex-
pansion to fundamental Poisson brackets, but compute them using Lemma 4.1.

Solving the homological equation. We need to solve ∂ωϕ = ψ for ϕ, with
the given ψ = {H1, iξ1η1} that we just computed. The exponents are read of as
follows for the four summands in Eq. (4.4):

ξ21ξ2 = ξj11 ξ
j2
2 η

k1
1 ηk2

2 ⇒ j = (2, 1) , k = (0, 0)

ξ21η2 = · · · ⇒ j = (2, 0) , k = (0, 1)

ξ2η
2
1 ⇒ j = (0, 1) , k = (2, 0)

η2η
2
1 ⇒ j = (0, 0) , k = (2, 1) .

Note that the resonant case j = k never appears, so there is no problem.

We make the ansatz

ϕ = aξ21ξ2 + bη2ξ
2
1 + cξ2η

2
1 + dη2η

2
1 ,

with a, b, c, d ∈ C to be determined, and plug it into the homological equation.
On the left hand side we find

∂ωϕ = i⟨ω,
(
2
1

)
−
(
0
0

)
⟩ a ξ21ξ2 + . . .

and on the right hand side

ψ =
i√
2

ξ21ξ2 + . . .

Comparing term by term we get

a =
1√
2

1

⟨ω,
(
2
1

)
⟩
, b =

i√
2

1

⟨ω,
(

2
−1

)
⟩
, . . .

23

The total first order correction is then

ϕ1 =
1√
2

(
⟨ω,

(
2
1

)
⟩−1ξ21ξ2 + i⟨ω,

(
2
−1

)
⟩−1η2ξ

2
1

+ ⟨ω,
(
−2
1

)
⟩−1ξ2η

2
1 + i⟨ω,

(
−2
−1

)
⟩−1η2η

2
1

)

=
1√
2

(
1

2ω1 + ω2
ξ21ξ2 + i

1

2ω1 − ω2
η2ξ

2
1

+
1

−2ω1 + ω2
ξ2η

2
1 + i

1

−2ω1 − ω2
η2η

2
1

)
.

Again, check that you get this right both by hand and in your program.

Solution Your program should produce the following result for the first few
orders (don’t forget the prefactor 1/

√
2 to get the numerical coefficients right,

and stay attentive not to permute coordinates accidentally):

ϕ1 = (0.27) ξ21ξ2 + (0.51i) ξ21η2 + (−0.51) η21ξ2 + (−0.27i) η21η2
ϕ2 = (0.02) ξ41 + (0.09i) ξ31η1 + (−0.14) ξ21ξ22 + (−0.64i) ξ21ξ2η2 + (1.06) ξ21η

2
2

+ (−0.09i) ξ1η31 + (0.28i) ξ1η1ξ
2
2 + (−0.28i) ξ1η1η22 + (0.02) η41 + (1.06) η21ξ

2
2

+ (0.64i) η21ξ2η2 + (−0.14) η21η22
ϕ3 = (−0.03)ξ41ξ2 + (−0.15i)ξ41η2 + (−0.24i)ξ31η1ξ2 + (0.75)ξ31η1η2 + (−0.01)ξ21η21ξ2

+ (−0.01i)ξ21η21η2 + (0.14)ξ21ξ
3
2 + (0.79i)ξ21ξ

2
2η2 + (−2.72)ξ21ξ2η22 + (−15.19i)ξ21η32

+ (0.75i)ξ1η
3
1ξ2 + (−0.24)ξ1η31η2 + (−0.59i)ξ1η1ξ32 + (1.78)ξ1η1ξ

2
2η2

+ (1.78i)ξ1η1ξ2η
2
2 + (−0.59)ξ1η1η32 + (−0.15)η41ξ2 + (−0.03i)η41η2 + (−15.19)η21ξ32

+ (−2.72i)η21ξ22η2 + (0.79)η21ξ2η
2
2 + (0.14i)η21η

3
2

Practical task: Check that with your program you get the correct result for
ϕ1, ϕ2, and ϕ3.

4.2 Analysis of truncated first integrals along leapfrog tra-
jectories

Welford’s online algorithm for the standard deviation.

4.3 Poincaré sections vs. contour lines of first integrals

5 Possible Calendar for a Semester of 12 Weeks

Week 1 Introduction to Linux. Installing Mizar. Crash course in C.
Homework: Prepare your computer. Do a simple exercise in C.

24

Week 2 Makefiles. Programming with Mizar. Forward Euler method.
Homework: Program Euler method for simple pendulum, double pendulum,

coupled harmonic oscillators, Lotka-Volterra aka Predator-Prey model. Phase
space and energy plot for mechanical models.

Week 3 Leapfrog method.
Homework: Compute phase space plot of harmonic oscillator with leapfrog.

Evolve to a fixed time T , subtract the analytical solution, and repeat this pro-
cedure for different time step resolutions h (i. e., analyze how the global error
scales with h), use a logarithmic plot to show that Euler is first order and
Leapfrog second order.

Verify that the energy is (up to an error that does not grow with time)
conserved by Leapfrog.

Coupled harmonic oscillators: compute a phase portrait in the plane (q1, p1)
by Leapfrog. Plot the “left half” of the energy, Hleft(q1, p1) =

1
2

(
p21 + ω2q21

)
as

a function of time. Observations?

Week 4 Analytic solution for linearly coupled harmonic oscillators. Hénon–
Heiles model. Hénon’s algorithm for computing Poincaré sections.

Homework: Poincare sections for the linearly coupled oscillators.

Week 5 Construction of splitting methods. SABA3 method.
Homework: SABA3 for the simple pendulum H = T + V , where T = p2,

V = ε(1− cos(θ)), taking ε = 1.
SABA3 for the harmonic oscillator H = p2 + q2. Evolve up to a fixed time

T and make a log plot of the error as a function of h.

Week 6 Improved splitting methods: correctors and alternative splittings.
Homework: Analyze the global error of SABA3 + corrector in a logarithmic

plot. Use the splitting into quadratic Hamiltonian + interaction to plot Poincaré
sections of the Hénon–Heiles model.

Week 7 Computer algebra with polynomials in one complex variable and
complex coefficients.

Homework: Program the following functions:

• Sum of two polynomials.

• Multiplication of a polynomial with a complex number.

• Product of two polynomials.

• Derivative (algebraically) of a polynomial.

• Evaluation of a polynomial in a given point.

• Creating a human-readable string from a polynomial.

Week 8 Computer algebra with polynomials of four complex variables.
Homework: Implement the same functions as for single-variable polynomi-

als, where the derivative should be partial derivatives with respect to the four
different variables.

25

Week 9 Using our “library” of functions for polynomials to implement Poincaré’s
perturbative construction.

Homework: Implement a function that computes the Poisson bracket of two
polynomials (where two of the four variables represent the momenta, and two
variables represent the positions). Implement a function that solves the homo-
logical equation for the non–resonant case. (Your program should produce an
error message if it encounters division by zero and then terminate in a controlled
way.)

Week 10 We implement Poincaré’s iterative method.
Homework: Compute by hand the complex representation of the interaction

Hamiltonian H1. Insert this data into your program as a polynomial. Run
Poincaré’s method to obtain at least ϕ3. Compare to the result given above and
make sure you get all coefficients right. (This will probably take some time.)

Week 11 We check how well the constructed polynomials are conserved along
the time evolution.

Homework: Sum up the first constructed order ϕi to get an approximate
constant of motion. Evaluate the polynomial along a leapfrog trajectory of the
full Hénon–Heiles model. Plot the value as a function of time and compare
how constant the result is as you increase the order of Poincaré’s construction.
Compute the standard deviation using Welford’s online algorithm (you will have
to take a subset of time steps otherwise this will become too slow – but make
sure to not pick only special points).

Week 12 Compare the level sets of the constructed approximate constants of
motion to the Poincaré sections we obtained in the earlier weeks.

Homework: Write an algorithm that samples sufficiently many points to
produce a good plot of the level sets.

Final task Write a summary of the lab course: about a third to half a page of
text for every week. Explain in few sentences what you did, what you learned,
and show and discuss some screenshots.

References

[DR05] Denis Donnelly and Edwin Rogers. Symplectic integrators: An intro-
duction. American Journal of Physics, 73(10):938–945, October 2005.

[Gio20] Antonio Giorgilli. Metodi e Modelli Matematici per le applicazioni.
http://www.mat.unimi.it/users/antonio/metmod/metmod.html,
2020.

[Hen82] M. Henon. On the numerical computation of Poincaré maps. Physica
D: Nonlinear Phenomena, 5(2):412–414, September 1982.

[LR01] Jacques Laskar and Philippe Robutel. High order symplectic inte-
grators for perturbed Hamiltonian systems. Celestial Mechanics and
Dynamical Astronomy, 80(1):39–62, May 2001.

26

[Tuc02] Warwick Tucker. Computing accurate Poincaré maps. Physica D:
Nonlinear Phenomena, 171(3):127–137, October 2002.

[Wik22] Wikipedia. Hénon–Heiles system. Wikipedia, February 2022.

27

	Introduction
	Introduction to Linux
	Programming in C
	The gcc compiler & makefiles

	The Mizar library for scientific plotting

	Numerical solutions of Hamiltonian equations
	The Forward Euler Algorithm
	The Leapfrog Algorithm
	Poincaré Sections for Linearly Coupled Harmonic Oscillators
	The Hénon–Heiles model
	Symplectic Methods by the Splitting Construction
	The SABA3 Algorithm
	Correctors to Splitting Algorithms
	Alternative Splitting

	Computer algebra with polynomials
	Complex Numbers in C
	Arrays in C
	…or by recursion (advanced programming challenge, optional)

	The Method of Poincaré for the Construction of First Integrals
	Implementation for the non–resonant Hénon–Heiles model
	Analysis of truncated first integrals along leapfrog trajectories
	Poincaré sections vs. contour lines of first integrals

	Possible Calendar for a Semester of 12 Weeks

