Correlation Energy of the Mean-Field Fermi Gas as an Upper Bound

Niels Benedikter

joint work with

Phan Thành Nam, Marcello Porta, Benjamin Schlein, and Robert Seiringer

Institute of Science and Technology

What is the Mean-Field Fermi Gas?

 $N\gg 1$ fermions without spin in the box $[0,2\pi]^3$ with periodic boundary conditions

$$H := \hbar^2 \sum_{k \in \mathbb{Z}^3} |k|^2 a_k^* a_k + \lambda \sum_{q,s,k \in \mathbb{Z}^3} \hat{V}(k) a_{q+k}^* a_{s-k}^* a_s a_q$$

Mean-field scaling:
$$\hbar := N^{-1/3}$$
, $\lambda := N^{-1}$

$$\begin{array}{ll} \text{Ground state energy} & E_N := \inf_{\substack{\psi \text{ has } N \text{ particles} \\ \|\psi\|=1}} \langle \psi, H\psi \rangle \end{array}$$

What is the Correlation Energy?

 $Correlation \ energy := deviation \ from \ Hartree-Fock \ energy$

$$E_N = \underbrace{E_{\rm kin+direct} + E_{\rm exchange}}_{= \inf \mathcal{E}_{\rm HF}} + \underbrace{E_{\rm GMB} + \dots}_{\rm correlation \ energy}$$

with $E_{\rm kin+direct} \sim N$, $E_{\rm exchange} \sim 1$, $E_{\rm GMB} \sim \hbar = N^{-1/3}$.

What is the Correlation Energy?

Correlation energy := deviation from Hartree–Fock energy

 $E_N = \underbrace{E_{kin+direct} + E_{exchange}}_{= inf \mathcal{E}_{HF}} + \underbrace{E_{GMB} + \dots}_{correlation \ energy}$ with $E_{kin+direct} \sim N$, $E_{exchange} \sim 1$, $E_{GMB} \sim \hbar = N^{-1/3}$.

[Bohm–Pines '53, Gell-Mann–Brueckner '57, Sawada–Brueckner–Fukuda–Brout '57]:

Random Phase Approximation

$$E_{\mathsf{GMB}} = \hbar \sum_{k \in \mathbb{Z}^3} |k| \left[\int_0^\infty \log \left(1 + \hat{V}(k) \left(1 - v \arctan v^{-1}
ight)
ight) \mathrm{d}v - rac{1}{4} \hat{V}(k) \, .
ight]$$

What is the Correlation Energy?

 $\label{eq:correlation} Correlation \ energy := deviation \ from \ Hartree-Fock \ energy$

 $E_N = \underbrace{E_{kin+direct} + E_{exchange}}_{= inf \mathcal{E}_{HF}} + \underbrace{E_{GMB} + \dots}_{correlation \ energy}$ with $E_{kin+direct} \sim N$, $E_{exchange} \sim 1$, $E_{GMB} \sim \hbar = N^{-1/3}$.

[Bohm–Pines '53, Gell-Mann–Brueckner '57, Sawada–Brueckner–Fukuda–Brout '57]:

Random Phase Approximation

$$E_{ ext{GMB}} = \hbar \sum_{k \in \mathbb{Z}^3} \lvert k
vert \left[\int_0^\infty \log \left(1 + \hat{V}(k) \Big(1 - v \arctan v^{-1} \Big)
ight) \mathrm{d}v - rac{1}{4} \hat{V}(k) \, .
ight]$$

All orders of perturbation theory in \hat{V}

Emergence of bosonic collective modes

Niels Benedikter

Correlation Energy of the Mean-Field Fermi Gas

Remarks:

• [Graf-Solovej '94]: $|E_N - \inf \mathcal{E}_{HF}| = o(1)$

Remarks:

- [Graf-Solovej '94]: $|E_N \inf \mathcal{E}_{HF}| = o(1)$
- not clear that \mathcal{E}_{HF} is minimized by plane waves HF likes to break symmetry

Remarks:

- [Graf-Solovej '94]: $|E_N \inf \mathcal{E}_{HF}| = o(1)$
- not clear that \mathcal{E}_{HF} is minimized by plane waves HF likes to break symmetry
- [Hainzl-Porta-Rexze '18]: 2nd order in \hat{V} as lower bound

Particle-Hole Transformation

Unitary map R on fermionic Fock space such that

$$R\Omega=\psi_{ ext{Slater, Fermi ball}}$$
 $Ra_k^*R^*=\left\{egin{array}{cc} a_k & k\in B_F\ a_k^* & k\in B_F^c \end{array}
ight.$

Particle-Hole Transformation

Unitary map R on fermionic Fock space such that

$$R\Omega = \psi_{ ext{Slater, Fermi ball}}$$
 $Ra_k^* R^* = \left\{ egin{array}{cc} a_k & k \in B_F \ a_k^* & k \in B_F^c \ a_k^* & k \in B_F^c \end{array}
ight.$

Write $\psi = R\xi$ and transform H to get

$$\langle \psi, H\psi \rangle = \mathcal{E}_{\mathsf{HF}}(\mathsf{plane waves}) + \langle \xi, \left(\underbrace{\hbar^2 \sum_{p \in B_F^c} p^2 a_p^* a_p - \hbar^2 \sum_{h \in B_F} h^2 a_h^* a_h}_{=: \mathbb{H}_{\mathsf{kin}}} + Q \right) \xi \rangle + \mathcal{O}(N^{-1}).$$

We "only" need to pick ξ .

Collective Particle-Hole Pairs

The interaction Q can be expressed through pair operators

$$b_k^* := \sum_{\substack{p \in B_F^c \ h \in B_F}} \delta_{p-h,k} a_p^* a_h^*$$

as

$$Q = rac{1}{N} \sum_{k \in \mathbb{Z}^3} \hat{V}(k) \left(2b_k^* b_k + b_k^* b_{-k}^* + b_{-k} b_k
ight) \, .$$

- b_k^* have approximately bosonic commutators
- ground state of quadratic Hamiltonians given by Bogoliubov transformations

Collective Particle-Hole Pairs

The interaction Q can be expressed through pair operators

$$b_k^* := \sum_{\substack{m{p}\in B_F^c\heta\in B_F}} \delta_{m{p}-m{h},k} a_{m{p}}^* a_{m{h}}^*$$

as

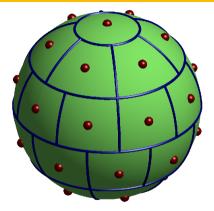
$$Q = rac{1}{N} \sum_{k \in \mathbb{Z}^3} \hat{V}(k) \left(2b_k^* b_k + b_k^* b_{-k}^* + b_{-k} b_k
ight) \,.$$

- b_k^* have approximately bosonic commutators
- ground state of quadratic Hamiltonians given by Bogoliubov transformations

How to express \mathbb{H}_{kin} through pair operators?

Niels Benedikter

Localization to Patches



Localize to M = M(N) patches near the Fermi surface,

$$b^*_{\alpha,k} := \sum_{\substack{h \in B_F \cap B_\alpha \\ p \in B_F^C \cap B_\alpha}} \delta_{p-h,k} a^*_p a^*_h$$

Localization to Patches

Localize to M = M(N) patches near the Fermi surface,

$$b^*_{\alpha,k} := \sum_{\substack{h \in B_F \cap B_\alpha \\ p \in B_F^C \cap B_\alpha}} \delta_{p-h,k} a^*_p a^*_h$$

If $M \gg N^{1/3}$ we can linearize around centers ω_{lpha} :

$$\mathbb{H}_{\mathsf{kin}} b^*_{lpha, k} \Omega \simeq \hbar^2 k \cdot 2 \omega_{lpha} \, b^*_{lpha, k} \Omega \, .$$

Localization to Patches

Localize to M = M(N) patches near the Fermi surface,

$$b_{\alpha,k}^* := \sum_{\substack{h \in B_F \cap B_\alpha \\ p \in B_F^C \cap B_\alpha}} \delta_{p-h,k} a_p^* a_h^*$$

If $M \gg N^{1/3}$ we can linearize around centers ω_{lpha} :

$$\mathbb{H}_{\mathrm{kin}} b^*_{lpha,k} \Omega \simeq \hbar^2 k \cdot 2 \omega_{lpha} \ b^*_{lpha,k} \Omega \,.$$

Quadratic Effective Hamiltonian:

$$\mathbb{H}_{eff} = \hbar \sum_{k \in \mathbb{Z}^3} |k| \left[\sum_{\alpha} u_{\alpha}(k)^2 b_{\alpha,k}^* b_{\alpha,k} + \frac{\hat{V}(k)}{M} \sum_{\alpha,\beta} \left(u_{\alpha}(k) u_{\beta}(k) b_{\alpha,k}^* b_{\beta,k} + u_{\alpha}(k) u_{\beta}(-k) b_{\alpha,k}^* b_{\beta,-k}^* + \text{h.c.} \right) \right]$$

Bosonic Approximation

For this slide: Assume $b^*_{\alpha,k}$, $b_{\alpha,k}$ are *exactly bosonic* operators.

Then the ground state of \mathbb{H}_{eff} is given by a Bogoliubov transformation:

$$\xi_{\mathsf{gs}} = \mathcal{T}\Omega, \quad \mathcal{T} = \exp\left(\sum_{k\in\mathbb{Z}^3}\sum_{lpha,eta}\mathcal{K}(k)_{lpha,eta}b^*_{lpha,k}b^*_{eta,-k} - \mathsf{h.c.}
ight)$$

K(k) is an explicit $M \times M$ -matrix

and

$$\langle \xi_{ extsf{gs}}, \mathbb{H}_{ extsf{eff}} \xi_{ extsf{gs}}
angle = extsf{E}_{ extsf{GMB}}$$
 .

Turn this into a rigorous upper bound for the fermionic system

Niels Benedikter

Correlation Energy of the Mean-Field Fermi Gas

Lemma: We have approximate CCR $[b_{\alpha,k}^*, b_{\beta,l}^*] = 0 = [b_{\alpha,k}, b_{\beta,l}]$ and $[b_{\alpha,k}, b_{\beta,l}^*] = \delta_{\alpha,\beta} (\delta_{k,l} + \mathcal{E}_{\alpha}(k, l))$, where for all ξ in fermionic Fock space

 $\|\mathcal{E}_{\alpha}(k,l)\xi\| \leq \frac{2}{n_{\alpha,k}n_{\alpha,l}}\|\mathcal{N}\xi\|$ ($\mathcal{N} = \text{fermionic number operator}$).

Lemma: We have approximate CCR $\begin{bmatrix} b_{\alpha,k}^*, b_{\beta,l}^* \end{bmatrix} = 0 = \begin{bmatrix} b_{\alpha,k}, b_{\beta,l} \end{bmatrix} \text{ and } \begin{bmatrix} b_{\alpha,k}, b_{\beta,l}^* \end{bmatrix} = \delta_{\alpha,\beta} \left(\delta_{k,l} + \mathcal{E}_{\alpha}(k, l) \right),$ where for all ξ in fermionic Fock space $\|\mathcal{E}_{\alpha}(k, l)\xi\| \leq \frac{2}{n_{\alpha,k}n_{\alpha,l}} \|\mathcal{N}\xi\| \qquad (\mathcal{N} = \text{fermionic number operator}).$

Lemma: If $M \ll N^{2/3}$ then typically $n_{\alpha,k} \to \infty$ as $N \to \infty$.

Proposition: With K(k) from the bosonic approximation, let in fermionic Fock space

$$\mathcal{T} := \exp\left(\sum_{k\in\mathbb{Z}^3}\sum_{lpha,eta}\mathcal{K}(k)_{lpha,eta}b^*_{lpha,k}b^*_{eta,-k}-\mathsf{h.c.}
ight)\,.$$

Then T acts as an approximate Bogoliubov transformation on $b^*_{\alpha,k}$ and $b_{\alpha,k}$.

Proposition: With K(k) from the bosonic approximation, let in fermionic Fock space

$${\mathcal T} := \exp\left(\sum_{k\in {\mathbb Z}^3}\sum_{lpha,eta} {\mathcal K}(k)_{lpha,eta} b^*_{lpha,k} b^*_{eta,-k} - {\mathsf{h.c.}}
ight)\,.$$

Then T acts as an approximate Bogoliubov transformation on $b^*_{\alpha,k}$ and $b_{\alpha,k}$.

Proof of Main Theorem. Calculate $\langle T\Omega, (\mathbb{H}_{kin} + Q) T\Omega \rangle$.