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Fock space

one-particle Hilbert space: h

n-particle Hilbert space: ⊗nh = h⊗ · · · ⊗ h

Symmetrization operator on ⊗nh: Sn = 1
n!

∑
σ∈Sn

σ̂

For systems with non-constant particle number (photons) use
Fock space:

Bosonic Fock space

Fs = ⊕∞
n=0Sn(⊗nh).

Each ψ ∈ Fs is a sequence ψ = (ψn)n∈N with ψn ∈ Sn(⊗nh).
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Creation and annihilation operators

For f ∈ h, ϕ = Sn(ϕ1 ⊗ · · · ⊗ ϕn) ∈ Sn(⊗nh):

a∗(f )ϕ =
√

n + 1Sn+1(f ⊗ ϕ)

a(f )ϕ =
1√
n

n∑
i=1

〈f , ϕi〉Sn−1(ϕ1 ⊗ · · · ⊗ ϕ̂i ⊗ · · · ⊗ ϕn).

Physicist’s notation: a∗(f ) =
∫

d3k f (k)a∗(k).

Bosonic CCR

[a(f ),a∗(g)] = 〈f ,g〉h 1
[a(f ),a(g)] = 0 = [a∗(f ),a∗(g)]
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The Hilbert space of non-relativistic QED

Fixed number (for simplicity: 1) of electrons,
quantized electromagnetic field.

One single electron, no spin: Hel = L2(R3)
(in position representation)

Photons:
one-particle Hilbert space: L2(R3 × {1,2}︸ ︷︷ ︸

helicity

)

(in momentum representation)
quantized em. field: Fs =

⊕∞
n=0 Sn

(
⊗nL2(R3 × {1,2})

)
Coupled system: H = Hel ⊗Fs.
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The Hamiltonian of non-relativistic QED

Minimal coupling

H = (p ⊗ 1+ A)2 + V ⊗ 1+ 1⊗ Hf

= (p + A)2 + V + Hf

p: electron momentum
A: quantized vector potential in Coulomb gauge
V : binding potential
Hf: energy of quantized em. field
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Rigorous definition of the vector potential A

H = (p ⊗ 1+ A)2 + V ⊗ 1+ 1⊗ Hf

Let ϕ⊗ η ∈ H = Hel ⊗Fs, let x ∈ R3. Then

(ϕ⊗ η)(x) := ϕ(x)︸ ︷︷ ︸
∈ C

η ∈ Fs.

Extend to all ψ ∈ H: ψ(x) ∈ Fs.
Define

(Aψ)(x) := (a(Gx) + a∗(Gx))ψ(x),

where

Gx(k , λ) =
e−ik ·x√

2|k |
e(k , λ) κ(|k |)︸ ︷︷ ︸

UV cutoff

.
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Self-adjointness of the Hamiltonian

The theory is well-defined:

Theorem (Hasler-Herbst)
Assume V infinitisemally bounded w.r. to −∆.
For all values of the coupling constant (here: α = 1):

H is self-adjoint on D = D(−∆ + Hf).
H is essentially self-adjoint on any core for −∆ + Hf and
bounded from below.
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Points to keep in mind

fixed number of electrons in first quantization
electromagnetic field in second quantization
coupling needs UV cutoff
 rigorously defined model

should be a good model for many low-energy phenomena:
e. g. atomic physics, molecular physics.
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Warning

All following results under mild or natural
assumptions on V and κ.

Results are simplified:
esp. only one-electron case considered.

Niels Benedikter Non-relativistic Quantum Electrodynamics



Definition of the model
Known results and open problems

Time Scale of Relaxation to the Ground State

Existence and Uniqueness of Ground State
Spectral properties
Asymptotic Completeness of Rayleigh Scattering

Result: Existence and Uniqueness of Ground State

Ground state 6= ground state of uncoupled system!
Ground state contains photons.

Theorem (Existence – Griesemer-Lieb-Loss ’01)
Assume −∆ + V has a negative energy ground state.
Then there is ψ ∈ H such that

Hψ = Eψ, E = infσ(H),

i. e. H has a ground state.

Theorem (Uniqueness – Hiroshima ’00)
If the ground state exists, it is unique (up to a phase).
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Result: Spectral properties

Uncoupled system: We know:

σ(−∆ + V ):

Σ

0inf σ 
σ(Hf):

Σ

0
σ(−∆ + V + Hf):

Σ

0inf σ 

Coupled system: We expect:

σ(H):
E absolutely cont.
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Problem: Asymptotic Completeness of Rayleigh. . .

Σ := ionization threshold
= minimal energy required for moving the electron to infinity.

Let ψ ∈ χ(H < Σ)H = χ(H < Σ)(Hel ⊗Fs).

Expectation:
Electron relaxes to ground state while

photons are emitted to infinity.

Conjecture: ACR (Relaxation to the GS)

There exist h1, . . . hn ∈ L2(R3 × {1,2}) such that for t →∞

‖e−iHtψ − e−iHfta∗(h1)eiHft︸ ︷︷ ︸
free photon

· · ·e−iHfta∗(hn)eiHft︸ ︷︷ ︸
free photon

e−iEtψg︸ ︷︷ ︸
ground state

‖ → 0.
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Problem: Asymptotic Completeness of Rayleigh. . .

Σ := ionization threshold
= minimal energy required for moving the electron to infinity.

Let ψ ∈ χ(H < Σ)H = χ(H < Σ)(Hel ⊗Fs).

Expectation:
Electron relaxes to ground state while

photons are emitted to infinity.

Conjecture: ACR (Relaxation to the GS)

There exist hi,1, . . .hi,ni ∈ L2(R3 × {1,2}) such that for t →∞

‖e−iHtψ−
∞∑

i=0

e−iHfta∗(hi,1)eiHft · · ·e−iHfta∗(hi,ni )e
iHft e−iEtψg‖ → 0.
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Problem: Asymptotic Completeness of Rayleigh. . .

Only unphysical results exist!

Theorem (ACR – Arai ’83)

For V (x) = cx2 and with dipole approximation A(x) ≈ A(0),
ACR holds.

Method: Solutions are explicitly constructed.

Theorem (ACR – Spohn ’97)

For V (x) = cx2 + small perturbation and with dipole
approximation A(x) ≈ A(0), ACR holds.

Method: Treat perturbation by Dyson series.
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Problem: Asymptotic Completeness of Rayleigh. . .

Theorem (ACR – Fröhlich-Griesemer-Schlein ’01)

Assume dipole approximation A(x) ≈ A(0).
In general potentials, ACR holds if either

photon mass m > 0 or
IR cutoff in the interaction: κ(k) = 0 for k < const.

Method: Photon number bounded by total energy. Ideas from
N-body scattering theory.

Difficulty: Infrared problem
In principle, infinitely many soft photons could be emitted!
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Points to keep in mind

Result: Ground state is existent and unique
Partial results: Coupling Excited eigenstates dissolve in
continuous spectrum
Open problem: Relaxation to the ground state (ACR)
ACR is an infrared problem: How to control soft photons?
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Overview (results from diploma thesis N.B.)

How fast does the atom relax?

1 Power law bound on relaxation to the ground state:
Assume ACR is true.
Then for ψ ∈ χ(H < Σ)H and "localized" observables A:

|〈ψ(t),Aψ(t)〉 −
〈
ψg ,Aψg

〉
| ≤

Cψ,n,ε

1 + tn + ε.

2 Uniform propagation estimates:
Outgoing photons "x · p > 0" allow for "uniform power law"

3 Harmonic oscillator coupled to the quantized radiation field

4 (Perturbative expansion of scattering amplitudes)
5 (Bounds on photon creation)
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A simplified model

Harmonic potential: V (x) ∝ x2

Dipole approximation: A(x) ≈ A(0)

Quadratic Hamiltonian

H = (p + gA(0))2 + ω2
0x2 +

∫
π(x)2 + (curl A(x))2 d3x︸ ︷︷ ︸

= Hf

A: vector potential quantized in Coulomb gauge,
π = −E : canonically conjugate quantized field.
g: electron charge = coupling constant,
ω0: frequency of uncoupled oscillator.
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Relaxation Estimates for the Harmonic Oscillator

Raising operator for the "atom": α† = x1
√
ω0 − ip1/

√
ω0.

Theorem (N.B.)
Assume coupling constant g is small. Then

‖e−iHt
(
α†ψg

)
− e−iHfa∗(φ+)eiHf e−iEtψg‖ ≤ Ce−γt +O(g2).

φ+(k , λ) explicitly obtained, has a peak at |k | ≈ ω0

non-trivial upper and lower bounds for γ found.

We can do better than power laws.
Useful for checking further conjectures.(
α†

)n
ψg can be treated analogously.
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Proof. Part I: Classical Solutions

Proof part I. Derive more explicit solutions (compared to Arai):
Classical equations of motion are linear (because Hamilton
function is quadratic)
 Solve classical initial value problem of fields and
oscillator using Laplace transform.
Energy conservation: For classical Hamilton function

dH(q(t),A(t),p(t),π(t))
dt

= 0

 bounds on growth of q(t), p(t), A(t), π(t) (pointwise)
 Laplace transform exists (on fields pointwise).

Determine poles z0, z0 of Laplace transform: Re z0 < 0
Inverse Laplace transform using Residues:

q(t) ∼ ez0t + e−St , Â(k , t) ∼ ez0t + e−i|k |t + e−St
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Part II: Connecting Classical with Quantum Solutions

Proof part II. Coherent states ei〈u,Jx〉ψg connect classical and
quantum theory:

Build Weyl operators from field and oscillator degrees of
freedom:
for α1,α2 ∈ R3 and φ1,φ2 : R3 → R3 transversal fields

〈u, Jx〉 := α1·p−α2·x+

∫
d3x φ1(x)·π(x)−

∫
d3x φ2(x)·A(x).

Nelson’s analytic vector theorem essential self-adj.

Quadratic Hamiltonian evolution of Weyl operators:

e−iHtei〈u(0),Jx〉eiHt = ei〈u(t),Jx〉,

with u(t) = (α1(t),φ1(t),α2(t),φ2(t)) solution of the
classical initial value problem (e. g. Spohn ’97).
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Part III: The Relaxation Estimate

Proof part III. Estimates on unwanted terms:
Raising operator: α† ∼ x1 − ip1.
Choose u1(0) such that 〈u1(0), Jx〉 = x1 = x1(0);
obtain x1(t) = e−iHtx1eiHt from

d
ds

ei〈u1(t),Jx〉s
∣∣∣∣
s=0

.

p1 analogously.

We get

e−iHtα†eiHt = b(t) + e−iHfta∗(φ+)eiHft + e−iHfta(φ−)eiHft ,

where ‖b(t)ψ‖ ≤ Ce−|Re z0|t .
We know a(φ−)Ω = 0 (vacuum), and ψg = ψ0 ⊗ Ω +O(g).
We show ‖φ−‖ = O(g).  ‖a(φ−)ψg‖ = O(g2).
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We can do better than power laws.
Useful for checking further conjectures.(
α†

)n
ψg can be treated analogously.

Niels Benedikter Non-relativistic Quantum Electrodynamics



Summary

Non-relativistic QED is a rigorously defined quantum
theory of low-energy matter and radiation.

Ground state (and many other aspects) well understood.
Relaxation by emission of photons (ACR) is an open
problem!
Difficulty: controlling the infrared behaviour.

Simplified model (harmonic oscillator, dipole
approximation) exhibits exponential relaxation to the
ground state.
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