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m We consider N particles in a fixed volume, e. g. electromagnetic trap.
m State of QM system ~ wavefunction

¢ c LZ(R:'}N) ~ L2(R3)®N.



Quantum Mechanical Fermions

m We consider N particles in a fixed volume, e. g. electromagnetic trap.

m State of QM system ~ wavefunction
Y e L2(R3N) ~ [2(R3)®N,

m Fermions have wavefunction antisymmetric w. r.t. permutation of the
particles, e. g.:

bx1, X2, ) = =0, X1, ox) (x5 €R?),
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Quantum Mechanical Fermions

We consider N particles in a fixed volume, e. g. electromagnetic trap.

State of QM system ~ wavefunction
Y e L2(R3N) ~ [2(R3)®N,

m Fermions have wavefunction antisymmetric w. r.t. permutation of the
particles, e. g.:

W(x1, X2,y xn) = —(x2, X1, - ., XN) (x; € R3).
m Let A = projection on antisymmetric subspace. Restrict to
Y e AL2(R3N),
m ~ Pauli exclusion principle: no two particles in the same orbital!

Alp@p®p1...® pn_2) =0.
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m In QM: observable ~ self-adjoint operator O on AL%(R3N),
m Experiments to be compared to expectation values

(¥, 0¢) e R.



Measurements and the Reduced Density

m In QM: observable ~ self-adjoint operator O on AL?(R3V).

m Experiments to be compared to expectation values

(¥, 0¢) e R.

m One-particle observables O on L?(R3):

(¥, O1) = /dxl...de J(xl,XQ,...)/dy O(x1;y)Y(y, x2, .. .)

= /dxldy O(x1; y)/ dxa ... dxy ¥(y, x2, .. )U(x1, x2, . . .)

=try . n|Y)(¥] = vy  partial trace

= [ dady OGaiy)ulyix) = tr Oy,
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Measurements and the Reduced Density

m In QM: observable ~ self-adjoint operator O on AL?(R3V).

m Experiments to be compared to expectation values
(¥, 0¢) e R.
m One-particle observables O on L2(R3):
(¥, O1) = /dxl coodxy P(x, X, - .)/dy O(x1;y)Y(y, x2, .. .)
= /dxldy O(xi; y)/ dxo ... dxn (v, x2, .. )(x1, x2, .. .)

=try . n|Y)(¥] = vy  partial trace

= [ dady OGaiy)ulyix) = tr Oy,

Yo = tro,. n|) ().
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Expectation values can be calculated from the reduced density J




m Exact time evolution: Schrédinger equation

iaﬂﬂt = H’l/)t, wt:o = 1/]07

where H is the Hamilton operator

H= Z Ag+X D V(x—x).

1<i<j<N



Time Evolution

m Exact time evolution: Schrédinger equation

0y = Hy, =0 = Yo,
where H is the Hamilton operator
H= Z —Dg A D) V(xi—x).
1<i<j<N
m Solution: _
e = e iy,
m In physical systems N is huge, N ~ 103 — 108,

Goal: Find more accessible equation that gives an approximation to v, .
Estimate error for N > 1.
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m Mean-field scaling: high density, weak interaction
~ particles move in effective, averaged potential.



Mean-Field Scaling

m Mean-field scaling: high density, weak interaction
~ particles move in effective, averaged potential.

m Kinetic energy: Pauli exclusion principle
~» fill energy levels up to Fermi momentum Kermi = O(N1/3).

XN: —Ay = XN: K2 ~ O(N°/3) (c.f. bosons: O(N)).
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Mean-Field Scaling

m Mean-field scaling: high density, weak interaction
~ particles move in effective, averaged potential.

m Kinetic energy: Pauli exclusion principle
~» fill energy levels up to Fermi momentum Kermi = O(N1/3).

(N°/3) (c.f. bosons: O(N)).

X
[l
M=
o
[
a

N
> Dy
Jj=1 Jj=1

m For N > 1: Evolution non-trivial if kinetic and potential energy are

same order of N. ~» A\ = N—1/3,

N

. 1
i0¢)r = Z—AXJ‘FW Z V(xi —x;) | ¥t

j=1 1<i<j<N
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m Velocity ~ momentum ~ Kkiermi = O(N1/3).

We expect: Can approximate dynamics to times of order N—1/3.



Semiclassical Time-Scale

m Velocity ~ momentum ~ Kfermi = O(N1/3).
We expect: Can approximate dynamics to times of order N—1/3,

m Introduce semiclassical time 7 such that physical time t is O(N~1/3):

t=N"13 ~

1
1<i<j<N

iNl/a@T%/)T =

N
Jj=1
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Semiclassical Time-Scale

m Velocity ~ momentum ~ Kfermi = O(N1/3).
We expect: Can approximate dynamics to times of order N—1/3,

m Introduce semiclassical time 7 such that physical time t is O(N~1/3):

t=N"13 ~

N
. Z 1
j=1

1<i<j<N

m Introduce semiclassical parameter ¢ = N~1/3 and multiply with ¢

Combined Semiclassical and Mean-Field scaling:

N

1
ie0rypr = Z _EQAXJ + N Z V(xi = x) | ¥r.

j=1 1<i<j<N
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Hartree-Fock Approximation

m Model with weak interaction should be close to model without
interaction.

m N non-interacting fermions in a trap:
H= Zszl hj, one-particle Hamiltonian h = —A + Viap on L2(R3).
Fill N eigenstates ¢1,...,on € L2(R3) of h with lowest energy ~»

Yo = Alp1 ® ... ® ¢p) € L2(R3M).
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Hartree-Fock Approximation

m Model with weak interaction should be close to model without
interaction.

m N non-interacting fermions in a trap:
H= Zszl hj, one-particle Hamiltonian h = —A + Viap on L2(R3).
Fill N eigenstates 1, ..., oy € L2(R?) of h with lowest energy ~

Yo =Alp1 ® ... pp) € L2(R3N).
m N weakly interacting fermions in a trap:

Yo~ Alp1 ® ... @ pp) € L2(R3N).

Hartree-Fock approximation

Restrict attention to Slater determinants

o = Alp1 ® ... ® op).
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Hartree-Fock Energy Functional

Reminder:

m For any Slater determinant q: H=Y 0+ 4 3, Vix—

%)

N N
(o, (H+ 3 Varapl)) o) = [ dx Y- (21905 + Vraplii )
=1 j=1
b [y S VicopltoRla P
2N * y,',j:l Y

1 N ——
_ ﬁ/dxdy 3" Vix—y) oi(x)ei(y) ei(x)ei(y)
ij=1

= Enr(e1, -5 on)-

m Minimize Exe(ep, ..., on) ~ Approximation to ground state.
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m Start with (approximate) ground state ) in a trap Virap.
m Switch off Virap ~ Evolution by Schrédinger equation.
m Restricted to Slater determinants:

br Alprr ® ... ® o).



Hartree-Fock Evolution Equation

Start with (approximate) ground state g in a trap Virap.
Switch off Virap ~ Evolution by Schrédinger equation.

Restricted to Slater determinants:

Yr ~ A1 ®@ ... © o 7).

m Evolution of the orbitals deduced from HF energy functional:

_ 1 & 1 &
ie0r iz =~ Dpirt i Y (V+lei?) i 2 (Vx (0irP57) .7
j=1 j=1
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Hartree-Fock Evolution Equation

Start with (approximate) ground state g in a trap Virap.

Switch off Virap ~ Evolution by Schrédinger equation.
Restricted to Slater determinants:

Ur >~ Alp17 @ ... @ on 7).
m Evolution of the orbitals deduced from HF energy functional:
2 1< 2 1&
i€0rpir = —¢ A@iﬁ""ﬁ Z (V * |‘PJ,T’ ) ‘Pi,'r_ﬁ Z(V * (SOI'JW)) Pj,T-
j=1 j=1

N
m Reduced density of Slater determinant: w; = % 3 |¢j+){(j.7|-
j=1

Hartree-Fock equation for reduced density:

i€67—w7— = [_82A + V Pr — XTwa]v wo = 7o-

where p;(x) = w-(x; x), X; integral op. with kernel X, (x;y) = V(x—y)w,(x;y).
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Accuracy of Hartree-Fock Dynamics

m Narnhofer, Sewell '81: Convergence to classical Vlasov equation
(= semiclassical limit of HF). Analytic V.

m Spohn '81: Vlasov equation for more general potentials.

m Erdds, Elgart, Schlein, Yau '04: Convergence to HF. Short times.
Analytic V.

m B, Porta, Schlein '13: Convergence to HF. Weaker assumptions:
V e LY(R?) with [|V(p)|(1+[p])*dp < co.
Quantitative bounds on rate of convergence. Arbitrary times.

Without semiclassical scaling:
m Bardos, Golse, Gottlieb, Mauser '03: Short times, bounded V.
m Fréhlich, Knowles '11: Short times, Coulomb potential.
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Theorem (B-Porta-Schlein '13)

Let {;}2, be an orthonormal basis in [*(R3).

Consider the Slater determinant Vo = A(¢1 ® ... ® pp).

Assume that its reduced density o satisfies the semiclassical commutator
bounds

tr[[%, 0] < eC, tr|[eV, v]| < eC.

Let 1), be the solution to the Schrédinger equation with initial data g
and ~y; its reduced density.
Let w; be solution to the Hartree-Fock equation with initial data = ~p.

Then there exist constants C, ¢ such that for all times 7 € R

C
trlyr —wr| < 7 exp(c exp(elrl)).

(arXiv:1305.2768)
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Extensions of the theorem

We can also treat

m more general initial data with a small number of extra particles that
can carry arbitrary correlations,

m relativistic kinetic energy v/ —e2A + m?,
m k-particle reduced densities,

m Hilbert-Schmidt norm (rate N—1/2).

]

There is a subclass of observables (‘semiclassical’ observables), with
expectation values converging at rate N1,

Notice:

m Exchange term — X is of subleading order
~> the Hartree equation is just as good as Hartree-Fock.
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Justification of Semiclassical Commutator Bounds

m Consider as initial data the ground state of non-interacting fermions
in a box [0, 27]® with periodic boundary conditions:

one-particle orbitals = plane waves: ¢j(x) = elkix ki€ Z3.
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Justification of Semiclassical Commutator Bounds

m Consider as initial data the ground state of non-interacting fermions
in a box [0, 27]® with periodic boundary conditions:

one-particle orbitals = plane waves: ¢j(x) = elkix ki€ Z3.

Reduced density of g = A(p1 @ ... ® ¢p) is

Y o 1 e
N eiE) =5 > e
J=1 |k|<cN1/3
g=ck 1 13 T e ia(x—y)/e dq e/ — (x—)/) _
Ne = lal<1 c
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Justification of Semiclassical Commutator Bounds

m Consider as initial data the ground state of non-interacting fermions
in a box [0, 27]® with periodic boundary conditions:

one-particle orbitals = plane waves: ¢j(x) = elkix ki€ Z3.

Reduced density of g = A(p1 @ ... ® ¢p) is

Y o 1 e
N eiE) =5 > e
J=1 |k|<cN1/3
g=ck 1 13 T e ia(x—y)/e dqefq(xy)/g:SD(X_y).
Ne = lal<1 c

m In more realistic trap, we expect non-trivial configuration space
density x:

X~y x+y
vo(x;y)299< . )x( 5 ) ¢, x :R* = C.
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m First semiclassical estimate:

o= (3 2 (2 ()

(We gain € since the p-factor is small for [x — y| > ¢.)




Justification of Semiclassical Commutator Bounds

m First semiclassical estimate:

oolciy) = (o ()« (S5) < o0 () (552

(We gain ¢ since the p-factor is small for [x — y| > ¢.)

m Second semiclassical estimate:

9. 70l(xi ) = (T + Ty ol y) = e (=2 ) v

X—|—y>
> .

(Compare to eVyyo(x;y) = E%Vgp (%) X (%) +...)
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Justification of Semiclassical Commutator Bounds

m First semiclassical estimate:
R X—Yy X+y X—Yy Xty
&l = e () (S52) <0 (X)) 1 (52).

(We gain ¢ since the p-factor is small for [x — y| > ¢.)

m Second semiclassical estimate:

9. 70l(xi) = (T + Vol y) = 2 () wx (5.

(Compare to eVyyo(x;y) = 5%Vgp (%) X (%) +...)

Proposition |
The semiclassical commutator bounds are stable w. r. t. the Hartree-Fock
equation: If initial data satisfies the semiclassical commutator bounds, then

tr|[8, wr]| < eCeXITl [V, w,]| < eCeXITl.
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Strategy of Proof

Outline:
Lift theory to Fock space (second quantization).

Particle-hole transformation ~ Slater determinant = transformed
vacuum (Fermi sea).

Reduced problem: Bound creation of excitations over the Fermi sea.

By Gronwall, it is sufficient to prove

sd%w(f)fz,NU(T)m < cC(r)U(T)QLN U(T)Q).

U(7): dynamics of excitatons.

In time derivative: Quadratic terms ~ a* a# completely cancel
against the Hartree-Fock equation.

@A Quartic terms ~ at* a? a# a7 remain.
To bound quartics with e, use semiclassical commutator bounds.

» Conclusions
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m Fermionic Fock space

F =P ALPR dx ... dxp)
n>0

=@M g yeF



m Fermionic Fock space
F =P ALPR dx ... dxp)
n>0

=@ 0 g yeF
m Creation/annihilation operators a(f), a*(f), where f € L?(R3):

[a* (Y] (xa, ., xa) = %an(—l)f—lﬁ FONO D (xa, ., Ky Xn)
j=1

[a(F)Y) D (xa, .. x0) =V + 1 / dx FOO)M ) (x, x1, . xn).-



Second Quantization

m Fermionic Fock space

F =P AR, dxi . .. dxn)
n>0

b= @O $0, 0 yeF
m Creation/annihilation operators a(f), a*(f), where f € L2(R3):

1 n

[a* (AWM (x1, .o oxa) = = (-1 af) " D (x, ..., 5,

njl

[a(F)P] " (x1, ..., xn) = Vn+ 1 / dx F(x) D (x, x1, . xn).

m Canonical anticommutation relations ({A, B} = AB + BA):

) Xn)

{a(f),a"(g)} = (f,8)12rs),  {a(f), alg)} = {a"(f),a"(g)} = 0.

Niels Benedikter (University of Bonn) Mean-Field Evolution of Fermions
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m Operator valued distributions:
a%, ax create/annihilate Dirac delta function at x € R3 (formally).

X!



Second Quantization

m Operator valued distributions:
*

a%, a, create/annihilate Dirac delta function at x € R3 (formally).

m Hamiltonian extended to act on Fock space F:
1
H = &2 / dxVa;Vay + SN / dxdy V(x—y)ayayayax

On (N with exactly N particles H = H.
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Second Quantization

m Operator valued distributions:
a%, a, create/annihilate Dirac delta function at x € R3 (formally).

X1

m Hamiltonian extended to act on Fock space F:
1
H = &2 / dxVa;Vay + SN / dxdy V(x—y)ayayayax

On (N with exactly N particles H = H.

m A product of a*'s and a's is called normal-ordered, if the a* are to the
left of the a, e.g. a*a*---a%aa--- a.

m Rule of thumb: Normal-ordered products can be estimated with
number-of-particles operator

N = /dx atax (or powers of it).

Niels Benedikter (University of Bonn) Mean-Field Evolution of Fermions 17 / 23



Redefine notion of particle s. th. “particle = excitation over Slater
determinant”. Implement as a unitary R : F — F.



Redefine notion of particle s. th. “particle = excitation over Slater
determinant”. Implement as a unitary R : F — F.

m Extend ¢1,...,on to o.n.b. {p;}jen of L2(R3).



Particle-Hole Transformation

Redefine notion of particle s. th. “particle = excitation over Slater
determinant”. Implement as a unitary R : F — F.

m Extend ¢1,...,¢n to 0.n.b. {¢;}jen of L2(R3).
m Introduce a Bogoliubov transformation R:

R ax R* = a(uy) + a*(w),

where uy(y) = 6(y—x) —jgil ©j(y)@;(x) and vi(y) Zjévll @i (y)ei(x).
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Particle-Hole Transformation

Redefine notion of particle s. th. “particle = excitation over Slater
determinant”. Implement as a unitary R : F — F.

m Extend ¢1,...,¢n to 0.n.b. {¢;}jen of L2(R3).
m Introduce a Bogoliubov transformation R:

R ax R* = a(uy) + a*(w),

N N
where wu(y) = 6(y—x) — Zl ©i(y)@;(x) and vy (y) = Zl @i (y)ei(x).
J= J=
m Transformed vacuum is Slater determinant (Fermi sea):

RQ=A(p1®...® ¢n).
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Particle-Hole Transformation

Redefine notion of particle s. th. “particle = excitation over Slater
determinant”. Implement as a unitary R : F — F.

m Extend ¢1,...,¢n to 0.n.b. {¢;}jen of L2(R3).
m Introduce a Bogoliubov transformation R:

R ax R* = a(uy) + a*(w),

N N
where wu(y) = 6(y—x) — Zl ©i(y)@;(x) and vy (y) = Zl @i (y)ei(x).
J= J=
m Transformed vacuum is Slater determinant (Fermi sea):
RQ:A(@1®®QDN)

m Transformed creation operators:

o \pr ) alwi) fori <N  (creates hole)
Ra'(pi)R" = { a*(¢i) fori> N (creates particle).
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m General identity:

1 * 1 —iHT/e * —iHT /e
Yr(yix) = N<¢r,axay¢r> = N(e HT/ERQ, aaye Hr/ RQ).



Excitation Dynamics

m General identity:
1 * 1 —iHT/e * —iHt/e
Y- (y; x) = N<w7—, ayayir) = N(e RQ, aja,e RQ).

m Let R; be the particle-hole transformation with Hartree-Fock-evolved
Fermi sea, i.e. R;Q = A(p1-® ... ® on.7).

Nve(y;x) = (e "7/°RQ, afa e T/FRQ)
= (Rre”"/FRQ, R*ata, R, Rie ™M/ RQ)

U(T) := Rre~™7/¢R: dynamics of excitations over HF evolution.
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Excitation Dynamics

m General identity:
1 * 1 —iHT/e * —iHt/e
Y- (y; x) = N<w7—, ayayir) = N(e RQ, aja,e RQ).

m Let R; be the particle-hole transformation with Hartree-Fock-evolved
Fermi sea, i.e. R;Q = A(p1-® ... ® on.7).
Nve(y;x) = (e "7/°RQ, afa e T/FRQ)
= (Rre”"/FRQ, R*ata, R, Rie ™M/ RQ)
(U(T)$2, (3" (urx) + a(vrx)) (a(ury) + a%(vrx)) U(T)Q)

U(T) := Rre~™7/¢R: dynamics of excitations over HF evolution.
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Excitation Dynamics

m General identity:
1 * 1 —iHT/e * —iHt/e
Y- (y; x) = N<w7—, ayayir) = N(e RQ, aja,e RQ).

m Let R; be the particle-hole transformation with Hartree-Fock-evolved
Fermi sea, i.e. R;Q = A(p1-® ... ® on.7).

)R, (" (urx) + a(vrx)) (a(ury) + " (vrx)) U(T)S2)
), (3" (urx)a(ury ) + a(vrx)a(ury) + a*(urx)a (vry)
= 3" (vry)a(vr ) U(T)Q) + {a(vrx), a*(vry)}

= (Vrx,Vr,y) = Nwr (y;x)

{

= (Rre ™M7/°RQ, R aja R Rie 7/°RQ)
<
<

U(r) := Rre~™7/¢R: dynamics of excitations over HF evolution.
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Error < Number of Excitations

m ~ ldentity:

Yr(yix) — wr(yix)
= %<U(7')Q, (a*(urx)a(ury) + a(vrx)a(ury) + a*(urx)a*(vr,y)
—a"(vry)a(vrx) U(T)Q).

m Operators are normal-ordered ~» can be bounded with the
number-of-particles operator N’ = [ dx afax.

tl’|’77- - UJT| <

C
W<U(7‘)Q,NU(T)Q>.

m To show: e (U(7)Q,NU(T)Q) < eC(r)(U(T)Q, (N + 1)U()Q).
(Then by Gronwall’s lemma (U(7)Q, N U(7)Q) < C(7).)
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m Time derivative:
,-5% UA(rNU(r) = U*(7)R; (T (i) — [Ha, AT (wr)] )R- U(7),

where dI'(0) = [dx O(x; y)a%ay.



Cancellations against Hartree-Fock Equation

m Time derivative:

is% V(PN U(r) = U*(r)R: (dr(izdsi0r) — [, T (w,)]) Ry UCP),
where dI'(O) = [ dx O(x; y)asa,.

m R¥[Hp,dl(w;)]R-: quartic, but not normal-ordered.
By normal-ordering: quadratic 4+ quartic terms.

m Hartree-Fock equation for dI'(ied;w;) ~ all quadratic terms cancel.
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Cancellations against Hartree-Fock Equation

m Time derivative:

is% V(PN U(r) = U*(r)R: (dr(izdsi0r) — [, T (w,)]) Ry UCP),
where dI'(O) = [ dx O(x; y)asa,.

m R¥[Hp,dl(w;)]R-: quartic, but not normal-ordered.
By normal-ordering: quadratic 4+ quartic terms.

m Hartree-Fock equation for dI'(ied;w;) ~ all quadratic terms cancel.

m Remaining:

4 U NUER)

“dr

~ % / dxdy V(x—y) (U()Q, a(trx)a(vex)a(vry)a(ury ) U(F)R).
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m Have to extract a factor € from the last expression,

5 [ Xy Ve ) UEIR. avr)a(r)avr)alur ) UI).



Using the Semiclassical Commutator Bounds
m Have to extract a factor € from the last expression,

l:tl/dxdy V(x=y)(U(T)Q, a(vr x)a(urx)a(vry)a(ur,)U(T)).

oi(¥)P;(x).

=
=

m Recall: vi(y) = 3 0j(y)gj(x) and ux(y) = 6(y—x) —

1 j=1

J
Thus / dx vy xurx = 0.

But there is V(x—y) in the way.
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Using the Semiclassical Commutator Bounds
m Have to extract a factor € from the last expression,

l:tl/dxdy V(x=y)(U(T)Q, a(vr x)a(urx)a(vry)a(ur,)U(T)).

oi(¥)P;(x).

=
=

m Recall: vi(y) = 3 0j(y)gj(x) and ux(y) = 6(y—x) —

1 j=1

J
Thus / dx vy xurx = 0.

But there is V(x—y) in the way. ~ Commute u; and V.
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Using the Semiclassical Commutator Bounds

m Have to extract a factor € from the last expression,

l:tl/dxdy V(x=y)(U(T)Q, a(vr x)a(urx)a(vry)a(ur,)U(T)).

2y )ai) and wly) = 3ly—x) = 3 e()7(x)

=

m Recall: v (y) =

J
Thus / dx vy xurx = 0.

But there is V(x—y) in the way. ~ Commute u; and V.
m Use Fourier V(x—y) = [dp V(p)eP*e=Py:

/dx vﬂxe"p'xuﬂx = /dx vT,X[e’.p"A‘, Urx] = /dx vTvX[e"p"A(, Nw](., x).
D ——

extract /e

O]
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Conclusions

m Hartree-Fock theory ~ Restriction to Slater determinants.

m Fermionic mean-field scaling is coupled to semiclassical
scaling.

m Controlling arbitrary times uses semiclassical commutator
bounds, which hold for examples of initial data.

m Convenient language: particle-hole transformations.

m Stationary properties: Semiclassical commutator bounds in
general initial data? Excitation spectrum?

m Dynamical properties: Coulomb interaction? Gravitational
collapse of stars? BCS theory of superconductivity/atomic
nuclei?
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