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Quantum System of N Fermions

Hamilton operator of N identical spinless particles on the (fixed size) 3D torus:

HN :=
N∑

i=1
(−∆i ) + λ

∑
1≤i<j≤N

V (xi − xj) with V : R3 → R .

Acts on the L2–space of antisymmetric wave functions of 3N variables

ψ(xσ(1), xσ(2), . . . , xσ(N)) = sgn(σ)ψ(x1, x2, . . . , xN) ∀σ ∈ SN .

For reasonable potentials, the Hamiltonian is self–adjoint.

The spectrum σ(HN) is interpreted as excitation energies measurable in experiments.
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Ground State Energy

The ground state energy is defined as

EN := inf σ(HN) = inf
ψ∈L2

a(T3N)
‖ψ‖=1

〈ψ,HNψ〉 .

How to compute EN? Define the reduced density matrices

γ(2) := N!
(N − 2)! tr3,4,...N |ψ〉〈ψ| , γ(1) := 1

N − 1 tr2 γ(2) .

Then

〈ψ,HNψ〉 = tr
(
−∆γ(1)

)
+ 1

2

∫∫
V (x1 − x2)γ(2)(x1, x2; x1, x2) dx1dx2 .

So we simply minimize over γ(2)?

The set of all 2-particle rdm is hard to characterize: N-representability problem.
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Mean–Field Regime

This problem cannot be solved in full generality: HN describes almost the entire variety
of our daily lives, superconductors, neutron stars, our bodies. . .

Be more specific, look at well–defined physical situations!

Simplest possibility: gas at high density and with weak interaction.
; We expect mean–field behavior: one particle moving through a continuous cloud
generated by all the other particles.
Mathematical Model: Mean–Field Scaling Regime

• high density: fixed volume (torus) and N particles, N →∞.
• weak interation: λ = N−1/3 because

〈 N∑
i=1

(−∆i )
〉
∼ N5/3 (antisymmetry!) ,

〈
λ

∑
1≤i<j≤N

V (xi − xj)
〉
∼ λN2 .
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Leading Order Approximation:
Hartree–Fock Theory
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Hartree–Fock Theory = Restriction to Slater Determinants

Multiply the entire Hamiltonian by ×~2, with ~ := N−1/3:

HN =
N∑

i=1

(
−~2∆i

)
+ 1

N
∑

1≤i<j≤N
V (xi − xj) .

Convergence to the Hartree–Fock energy [Bach ’92, Graf–Solovej ’94]:∣∣EN − EHF
N
∣∣ = o(N) , where EHF

N := inf
ψ is Slater
determinant

〈ψ,HNψ〉 .

I. e., theory has been restricted to the simplest antisymmetric states

ψN = Slater determinant =
N∧

j=1
fj , fj ∈ L2(T3) .

Furthermore, if we consider a Slater determinant and evolve it in time, it stays close to
a Slater determinant, but with evolved “orbitals” fj,t .
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Stability of the Hartree–Fock Approximation

Theorem: [B–Porta–Schlein ’14]

Let ψN =
∧N

j=1 fj and i~∂tψN,t := HNψN,t .

Assume ‖[x̂ , γ(1)]‖tr , ‖[p̂, γ(1)]‖tr ≤ CN~. (∗)

Then ‖γ(1)
t − γHFt ‖tr ≤ N1/6Ct

for i~∂tγ
HF
t = [h(γHFt ), γHFt ]. (HF)

SubmanifoldM⊂ H .
1
i HNψN,t

TψN,tM

Pt
1
i HNψN,t

ψN,t

M

Pt = orthog. projection onTψN,tM

• (∗) can be directly verified for non–interacting fermions on torus/in harmonic trap;
using semiclassical analysis also for arbitrary traps [Fournais–Mikkelsen ’19].

• γHFt is the 1-particle rdm of a Slater determinant
∧N

j=1 fj,t with evolved orbitals;
(HF) is a system of coupled non–linear equations for the orbitals fj,t .

• Dirac–Frenkel principle shows that (HF) is optimal choice [B–Sok–Solovej ’18].
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Beyond Hartree–Fock Theory

Conclusion: Hartree–Fock theory (Slater determinants) is a good description of many
quantities at leading order, for fermions in the mean–field regime.

However: HF theory produces some unphysical predictions, e. g., vanishing density of
states at the Fermi energy (contradicting specific heat measurements in metals)!

; We need to go to the next order. We need to do better than just Slater
determinants and include non–trivial quantum correlations.

[Wigner ’34]: Next order of the ground state energy (correlation energy)?

We accomplish a description of quantum correlations by bosonizing collective
particle–hole excitations. 7



Next Order:
Bosonization of Collective Excitations
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The Almost–Optimal Slater Determinant

Hamiltonian in momentum representation, written with anti-commuting operators:

HN := ~2
∑

k∈Z3

|k|2a∗kak + 1
N

∑
q,s,k∈Z3

V̂ (k)a∗q+ka∗s−kasaq , ~ = N−1/3 .

Introduce the Slater determinant of N plane waves

ΨN :=
∧

k∈BF

fk , BF = Fermi ball :=
{

k ∈ Z3 | |k| ≤ N1/3
( 3
4π

)1/3
}
.

Its energy is almost exactly the Hartree–Fock energy [Gontier–Hainzl–Lewin ’18]:

〈ΨN ,HNΨN〉 = EHF
N +O(e−N1/3) .

(The optimal Slater determinant probably develops weak density waves.)
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Separating the Slater Determinant: Particle–Hole Transformation R

Define the unitary map R on fermionic Fock space by

R Ω := ΨN , R a∗k R∗ :=
{

a∗k k ∈ Bc
F

ak k ∈ BF

Write Ψ̃N = Rξ. Expand R∗HNR and normal–order

〈Ψ̃N ,HNΨ̃N〉 = EHF
N + 〈ξ,

(
~2
∑

p∈Bc
F

p2a∗pap − ~2
∑

h∈BF

h2a∗hah

︸ ︷︷ ︸
=: Hkin

+
∑

h∈BF

Q

︸ ︷︷ ︸
quartic in

operators a∗, a

)
ξ〉

For ξ = Ω:
(
Hkin + Q

)
Ω = 0.

Goal: a quadratic approximation to the excitation Hamiltonian Hkin + Q.
(Quadratic Hamiltonians can be diagonalized by Bogoliubov transformations.)
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Collective Particle–Hole Pairs

Observe: if we introduce collective pair operators

b∗k :=
∑

p∈Bc
F

h∈BF

δp−h,ka∗pa∗h
p “particle” outside the Fermi ball
h “hole” inside the Fermi ball

then
Q = 1

N
∑

k∈Z3

V̂ (k)
(
2b∗kbk + b∗kb∗−k + b−kbk

)
+O

(N 2

N
)
.

This is convenient because the b∗k and bk have approximately bosonic commutators:

[b∗k , b∗l ] = 0 , [bl , b∗k ] = δk,ln2k +����XXXXE(k, l) .

But how to express Hkin through pair operators?
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Localization to Patches – Linearizing the Kinetic Energy

Fermi ball BF

ωα

[Benfatto–Gallavotti ’90]
[Haldane ’94]

[Fröhlich–Götschmann–Marchetti ’95]

[Kopietz et al. ’95]

Localize to M = M(N) patches near the Fermi surface,

b∗α,k := 1
nα,k

∑
p∈Bc

F∩Bα
h∈BF∩Bα

δp−h,ka∗pa∗h

where nα,k is for normalization such that ‖b∗α,kΩ‖ = 1.

Linearize kinetic energy around patch center ωα:

Hkinb∗α,kΩ ' 2~|k · ω̂α|b∗α,kΩ

as if b∗α,k was a mode of a harmonic oscillator.
(c. f., [Lieb–Mattis ’65] for the 1D Luttinger model)

Hkin '
∑

k∈Z3

M∑
α=1

2~uα(k)2b∗α,kbα,k , uα(k)2 := |k·ω̂α| .
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Quadratic Effective Hamiltonian

Recall
Q = 1

N
∑

k∈Z3

V̂ (k)
(
2b∗kbk + b∗kb∗−k + b−kbk

)
Decompose

b∗k =
∑
α

nα,kb∗α,k + lower order .

Normalization:
n2α,k = #p-h pairs in patch Bα with momentum k

' 4πN2/3

M |k · ω̂α| = 4πN2/3

M uα(k)2 .

kωα

Effective Bosonic Hamiltonian

Heff= ~
∑

k∈Z3

[∑
α

uα(k)2b∗α,kbα,k+ V̂ (k)
M

∑
α,β

(
uα(k)uβ(k)b∗α,kbβ,k+uα(k)uβ(k)b∗α,kb∗β,−k+h.c.

)]
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Diagonalization of the Bosonic Hamiltonian

We can write Heff = ~
∑

k∈Z3

[
heff(k)− 1

2 tr(D + W )
]

where (with k–dependence suppressed)

heff = 1
2
(

(b∗)T bT
)(D + W W̃

W̃ D + W

)(
b
b∗

)
, b =


...

bα
...

 ,

D =
(
diag(u2

α) 0
0 diag(u2

α)

)
, W = V̂

(
|u〉〈u| 0
0 |u〉〈u|

)
, W̃ = V̂

(
0 |u〉〈u|
|u〉〈u| 0

)
.

The model is solved (i. e., all excitation energies are known) if we can find linear
combinations of b– and b∗–operators with unchanged commutator relations such that

heff =
M∑
γ=1

eγ
(

b̃∗γ b̃γ + 1
2

)
, eγ ∈ R .
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Bogoliubov Transformation

Linear transformations of the operators that leave the commutator relations invariant
are called Bogoliubov transformations. They can be written as

b = 1
2(S1 + S2)b̃ + 1

2(S1 − S2)b̃∗ , S =
(

S1 0
0 S2

)
a symplectic matrix .

We construct [B ’19] S such that

heff =
M∑

γ,δ=1
Eγ,δ b̃∗γ b̃δ + 1

2 tr E ,

E '
√
diag(u2

α) + V̂ |u〉〈u| .

The eigenvalues of “diagonal + rank–one”
matrices can be found graphically.

0.5 1.0 1.5 2.0 2.5

-20

-10

10

20

Orange: y = 1
V̂ (k)

. Qualitative change for Coulomb singularity V̂ (k) = 1
|k|2 at k → 0. 14



Spectrum

no interaction
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short–range interaction
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• plasmon mode (collective oscillation) emerges
• continuous spectrum qualitatively unchanged

A non–perturbative approach to screening and Fermi liquid theory?
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Rigorous Result:
Upper Bound on the Ground State Energy
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Upper Bound on Correlation Energy

Theorem: [B–Nam–Porta–Schlein–Seiringer ’19]

Let V̂ (k) be non-negative, bounded, and compactly supported. Then

EN ≤ EHF
N + ~

∑
k∈Z3

|k|
[∫ ∞

0
log
(
1 + V̂ (k)

(
1− λ arctanλ−1

))
dλ− 1

4 V̂ (k)
]

+O(~N−1/27) . This is 1
2 tr [E − (D + W )] as in the bosonic Heff.

• Non–rigorously obtained by [Macke ’50, Bohm–Pines ’53, Gell-Mann–Brueckner
’57, Sawada et al. ’57]. Historical breakthrough!

• [Hainzl–Porta–Rexze ’18] obtained a rigorous lower bound to second order in V̂ ,

EN ≥ EHF − ~
π

2 (1− log 2)
∑

k∈Z3

|k|V̂ (k)2 +O(V̂ 3) .
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Proof:
Justification of the Bosonic Approximation
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Ground State in the Bosonic Picture

The previously introduced Bogoliubov transformation has an explicit formula:

T = exp
( ∑

k∈Z3

M∑
α,β=1

K (k)α,βb∗α,kb∗β,−k − h.c.
)
, K (k) = log|S1|

and thus, in the bosonic picture, the ground state of Heff is given by

ξgs = T Ω .

Makes sense even if the b∗–operators are actually pairs of fermionic operators.

Maybe not optimal, but we can still use it as a trial state.

17



Convergence to Bosonic Approximation

General idea: bosonic approximation is good if the number of occupied fermionic
modes is much smaller than the number of available fermionic modes (per patch).

Lemma: We have approximately bosonic commutators:

[b∗α,k , b∗β,l ] = 0 = [bα,k , bβ,l ] and [bα,k , b∗β,l ] = δα,β
(
δk,l + Eα(k, l)

)
,

where for all ψ in fermionic Fock space the error operator Eα(k, l) is bounded by

‖Eα(k, l)ψ‖ ≤ 2
nα,knα,l

‖Nψ‖ (N = fermionic number operator) .
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Approximate Bogoliubov Transformation

Lemma: T acts as an approximate Bogoliubov transformation, i. e.,

T ∗bα,kT =
M∑
β=1

1
2(S1 + S2)α,βbβ,k +

M∑
β=1

1
2(S1 − S2)α,βb∗β,−k + Eα,k

where for all ψ in fermionic Fock space the error operator Eα,k is bounded by[∑
α

‖Eα,kψ‖2
]1/2

≤ C
min
α

n2α,k
‖(N + 2)3/2ψ‖ .

Lemma: The number of fermions is uniformly bounded (Grönwall argument):

〈ξgs, (N + 1)3 ξgs〉 ≤ C .

19



QED


