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Quantum System of N Fermions

Hamilton operator of N identical spinless particles on the (fixed size) 3D torus:

N
Hy=Y (A)+X > V(x-x) with V:R*>R.
=i 1<i<j<N

Acts on the L?-space of antisymmetric wave functions of 3N variables

w(xa'(l)a X0(2)7 s 7X0'(N)) = sgn(0)¢(x1,x2, s 7XN) Vo € SN .

For reasonable potentials, the Hamiltonian is self-adjoint.

The spectrum o(Hy) is interpreted as excitation energies measurable in experiments.



Ground State Energy

The ground state energy is defined as

En :=info(Hy) = inf (¥, HyY) .
e L2 T?’N
\WH 1
How to compute Ep? Define the reduced density matrices
N! 1
-7 4 (1) . tro~(3)
"= o r34,.NU)W], = gty

Then
_ @) , L @) .
(¥, Hyy) = tr (—A'y ) + 5 V(x1 — x2)7'“ (x1, x2; X1, x2) dxydxo .
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e L2 T?’N
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How to compute Ep? Define the reduced density matrices
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Then
_ @) , L @) .
(¥, Hyy) = tr (—A'y ) + 5 V(x1 — x2)7'“ (x1, x2; X1, x2) dxydxo .

So we simply minimize over 7(2)?

The set of all 2-particle rdm is hard to characterize: N-representability problem.
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This problem cannot be solved in full generality: Hpy describes almost the entire variety
of our daily lives, superconductors, neutron stars, our bodies. . .
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Mean-Field Regime

This problem cannot be solved in full generality: Hpy describes almost the entire variety

of our daily lives, superconductors, neutron stars, our bodies. ..
Be more specific, look at well-defined physical situations!

Simplest possibility: gas at high density and with weak interaction.
~» We expect mean—field behavior: one particle moving through a continuous cloud

generated by all the other particles.
Mathematical Model: Mean-Field Scaling Regime

e high density: fixed volume (torus) and N particles, N — cc.
e weak interation: A = N~1/3 because

<2N:(—A,-)> ~ N°/3  (antisymmetry!) , <)\ Z V(xi — XJ)> ~ AN?.

i=1 1<i<j<N



Leading Order Approximation:
Hartree—Fock Theory



Hartree—Fock Theory = Restriction to Slater Determinants

Multiply the entire Hamiltonian by x %2, with i := N~1/3:

N
1
2
HN:Z(—h Ai)+N Z V(X,'—Xj).
i=1 1<i<j<N
Convergence to the Hartree-Fock energy [Bach '92, Graf-Solovej '94]:
|En — ENFl = o(N),  where EfiF .= inf (s, Hy) .
1 is Slater
determinant
I.e., theory has been restricted to the simplest antisymmetric states

N
1y = Slater determinant = /\ fi f; € L2(T3).
j=1



Hartree—Fock Theory = Restriction to Slater Determinants

Multiply the entire Hamiltonian by x %2, with i := N~1/3:

N
1
HN =S Z (—h2A,’) + N Z V(X,' — XJ) o
i=1 1<i<j<N
Convergence to the Hartree-Fock energy [Bach '92, Graf-Solovej '94]:
|En — ENFl = o(N),  where EfiF .= inf (s, Hy) .
1 is Slater
determinant
I.e., theory has been restricted to the simplest antisymmetric states
N
1y = Slater determinant = /\ fi, f; € L2(T3).
j=1
Furthermore, if we consider a Slater determinant and evolve it in time, it stays close to
a Slater determinant, but with evolved “orbitals” f; ;.



Stability of the Hartree—Fock Approximation

Theorem: [B—Porta—Schlein "14] Submanifold M C H
Let ¢y = AL, £ and iROwhn,e = Hytow,e.
Assume [[[%,YM]fer, 1B, 7PD]ller < CNR. (%)

Then
17 — /FF e < NS C,

for ihat%'.:”: = [h('Yt'.:lF)v PYz't-lF]- (HF) P = orthog. projection on Ty, , M




Stability of the Hartree—Fock Approximation

Theorem: [B—Porta—Schlein "14] Submanifold M C H
Let ¢y = AL, £ and iROwhn,e = Hytow,e.
Assume [[[%,YM]fer, 1B, 7PD]ller < CNR. (%)

Then
Ie? =2t < N¥/0C,

for ih@t%'.:”: = [h('Yt'.:lF)v PYz't-lF]- (HF) P = orthog. projection on Ty, , M

e () can be directly verified for non—interacting fermions on torus/in harmonic trap;
using semiclassical analysis also for arbitrary traps [Fournais—Mikkelsen '19].

e 7P is the 1-particle rdm of a Slater determinant /\J-Nzl f; + with evolved orbitals;
(HF) is a system of coupled non-linear equations for the orbitals f; ;.

e Dirac—Frenkel principle shows that (HF) is optimal choice [B-Sok—Solovej '18]. .



Beyond Hartree—Fock Theory

Conclusion: Hartree—Fock theory (Slater determinants) is a good description of many

quantities at leading order, for fermions in the mean—field regime.

However: HF theory produces some unphysical predictions, e. g., vanishing density of
states at the Fermi energy (contradicting specific heat measurements in metals)!

~> We need to go to the next order. We need to do better than just Slater

determinants and include non—trivial quantum correlations.

[Wigner '34]: Next order of the ground state energy (correlation energy)?

We accomplish a description of quantum correlations by bosonizing collective

particle-hole excitations.



Next Order:
Bosonization of Collective Excitations



The Almost—Optimal Slater Determinant

Hamiltonian in momentum representation, written with anti-commuting operators:
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The Almost—Optimal Slater Determinant

Hamiltonian in momentum representation, written with anti-commuting operators:

1 A
Hy = i? Z |k|2a}ay + N Z V(k)agkas_kasaq h= N3,
kez3 q,s,ke€Z3

Introduce the Slater determinant of N plane waves

1/3
Wy:= A f,  Br=Fermiball := {keZ3 | |k] < N3 (3) }
keBE i

Its energy is almost exactly the Hartree—Fock energy [Gontier—Hainzl-Lewin '18]:
(Wy, HyWy) = ERF + 0(e" M) .

(The optimal Slater determinant probably develops weak density waves.)



Separating the Slater Determinant: Particle-Hole Transformation R

Define the unitary map R on fermionic Fock space by
ay k € Bf

RQ =V, Ra; R* :=
. o {ak k € Br
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Separating the Slater Determinant: Particle-Hole Transformation R

Define the unitary map R on fermionic Fock space by
* k c

RQ =Wy, Rat R* = { % S

Ak k € Br

Write \TJN = R¢. Expand R*HyR and normal—order

<®N,HN®N>=E&‘F+<5,< B> pPaja, — KD haja,  + Q )s)
pEBE heBe
N——

. Hkin quartic in
- operators a*, a

For € = Q: (Hkin+Q)Q:o.

Goal: a quadratic approximation to the excitation Hamiltonian H" + Q.
(Quadratic Hamiltonians can be diagonalized by Bogoliubov transformations.)



Collective Particle—Hole Pairs

Observe: if we introduce collective pair operators

. p “particle” outside the Fermi ball
= D Gp-hkapah e .
A h  “hole” inside the Fermi ball
pEBE
heBE
then A
Zv ) (2bibi + bib®y + b kbk)+(9<N)

keZ3

This is convenient because the by and by have approximately bosonic commutators:

(b5, b;1=0 ,  [by, b}] = 0k nt +EkA] .

10



Collective Particle—Hole Pairs

Observe: if we introduce collective pair operators

. % p ‘“particle” outside the Fermi ball
= D Gp-hkapah e .
A h  “hole” inside the Fermi ball
pEBE
heBE
then A2
Zv ) (2bibi + bib®y + b kbk)+(9<N)

keZ3

This is convenient because the by and by have approximately bosonic commutators:

(b5, b;1=0 ,  [by, b}] = 0k nt +EkA] .

But how to express HK" through pair operators?

10



Localization to Patches — Linearizing the Kinetic Energy

Localize to M = M(N) patches near the Fermi surface,

1
* L * %
ak T Z 5P—h7kapah
.k peBiNB,
heBENBy

where n, j is for normalization such that ||b% Q|| = 1.

[Benfatto—Gallavotti '90]
[Haldane '94]
[Fréhlich—Gétschmann—Marchetti '95]

[Kopietz et al. '95]
11



Localization to Patches — Linearizing the Kinetic Energy

Localize to M = M(N) patches near the Fermi surface,

1

* L * %

ak T Z 5P—h7kapah
.k peBiNB,
heBENBy

where n, j is for normalization such that ||b% Q|| = 1.

Linearize kinetic energy around patch center w:

H<"b¥  Q ~ 2|k - &a b, Q2

as if b’ , was a mode of a harmonic oscillator.

[Benfatto—Gallavotti '90]

[Haldane '94] (c.f., [Lieb—Mattis '65] for the 1D Luttinger model)
[Fréhlich—Gétschmann—Marchetti '95] ’ M ) 9
[Kopietz et al. '95] P e Z Z 2huq (k) bz,kba,ka Ua(k)* = [k-Qal .
kez3 a=1
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Quadratic Effective Hamiltonian

Recall

1 A
D= > V(K) (2bibi + bib* j + b_iby)
kez3
Decompose

bi = na kb, + lower order .
(0%
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Quadratic Effective Hamiltonian

Recall

1 A
D= > V(K) (2bibi + bib* j + b_iby)

kez3
Decompose

bi = na kb, + lower order .

Normalization:

nik = #p-h pairs in patch B, with momentum k

A

v
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Quadratic Effective Hamiltonian

Recall

Z V(k
keZ3
Decompose

2bkbk + bkb* P b_ kbk)

by = Z Ne,k by, i + lower order .

Normalization:

nik = #p-h pairs in patch B, with momentum k

Effective Bosonic Hamiltonian

H= 1> "1 ua(k)?

kez3L o

V(k)

a’ﬂ

A

ba, baﬁfvz (Ua(k) ug (k) ba, kbt ua (k) ug(K) b7, b;,—kJrh-C)

v

12



Diagonalization of the Bosonic Hamiltonian

We can write Heff — Z {heff(k) _ %tr(D + W)}

kez3
where (with k—dependence suppressed)
1 D+W W b |
heff == ((p\T BT o b= b,
2 (( ) ) w D+W)\b*)’ e

_ (diag(ud) 0 ) :A<u><u| 0) ~:A( 0 |u><u|>
P < o dig))” " Vo ) VT e o )

The model is solved (i.e., all excitation energies are known) if we can find linear
combinations of b— and b*—operators with unchanged commutator relations such that
M

o 1
hefF:Zeﬁ,(bf/bﬁ,—l—z), e, €R.
=1 13



Bogoliubov Transformation

Linear transformations of the operators that leave the commutator relations invariant
are called Bogoliubov transformations. They can be written as

(51 +S)b+= (51 S)b* S= <f)1 g) a symplectic matrix .
2
We construct [B '19] S such that
1 20
hefl = ZE,Mb bs + StrE, ‘ \ \ \
e L1 | —
E ~ \/diag(u?) + V|u)(u] . . ! " 0 -
Vdiag(d) + Vo) (ul . —
The eigenvalues of “diagonal + rank—one” 0
matrices can be found graphically.

1 A 1
0% Qualitative change for Coulomb singularity V (k) = "2 atk—0. |,

Orange: y =



Spectrum

no interaction short—range interaction Coulomb interaction

1 ° ; !
wlid
0 5
momentum k of particle-hole pair momentum k of particle—hole pair momentum k of particle-hole pair

e plasmon mode (collective oscillation) emerges

e continuous spectrum qualitatively unchanged

A non—perturbative approach to screening and Fermi liquid theory?

15



Rigorous Result:
Upper Bound on the Ground State Energy



Upper Bound on Correlation Energy

Theorem: [B-Nam—Porta—Schlein—Seiringer '19]

Let V/(k) be non-negative, bounded, and compactly supported. Then

En < ERNF+1 Y |k UOO log (1 + V/(k) (1~ Aarctan A7) ) dx — Z\?(k)}
kez3 2

+ O(AN~Y2T) This is 1 tr[E — (D + W)] as in the bosonic H*.

16



Upper Bound on Correlation Energy

Theorem: [B-Nam—Porta—Schlein—Seiringer '19]

Let V/(k) be non-negative, bounded, and compactly supported. Then

En < ERNF+1 Y |k UOO log (1 + V/(k) (1~ Aarctan A7) ) dx — i\?(k)}
kez3 2

+ O(AN~Y2T) This is 1 tr[E — (D + W)] as in the bosonic H*.

e Non-rigorously obtained by [Macke '50, Bohm—Pines '53, Gell-Mann—Brueckner
'57, Sawada et al. '57]. Historical breakthrough!

o [Hainzl-Porta—Rexze '18] obtained a rigorous lower bound to second order in v,

En > EMF —hZ(1—log2) S |k|V(k)? + O(V?).
2 keZ3 16



Proof:
Justification of the Bosonic Approximation



Ground State in the Bosonic Picture

The previously introduced Bogoliubov transformation has an explicit formula:

—exp(Z > K(k ,Bbz7kb§7_k—h.c.>, K(k) = log|S1|

keZ3 a,f=1

and thus, in the bosonic picture, the ground state of H is given by

e =TQ.

Makes sense even if the b*—operators are actually pairs of fermionic operators.

Maybe not optimal, but we can still use it as a trial state.

17



Convergence to Bosonic Approximation

General idea: bosonic approximation is good if the number of occupied fermionic
modes is much smaller than the number of available fermionic modes (per patch).

Lemma: We have approximately bosonic commutators:
(65 B5,) = 0= [bako bs]  and  [bak, b ] = G (ks + Ealk, 1))

where for all 9 in fermionic Fock space the error operator &,(k, /) is bounded by

2

Nek Ney, |

1€alk, Nl <

IV (N = fermionic number operator) .

18



Approximate Bogoliubov Transformation

Lemma: T acts as an approximate Bogoliubov transformation, i.e.,

T bk T = Z (51 + S2)a ﬂbﬂk-i-z — 5)a,8bf ik + €ak
512

where for all 9 in fermionic Fock space the error operator €, , is bounded by

1/2 C
H%wW] < — (N +2)%2y) .
[Ea: moin ”i,k

Lemma: The number of fermions is uniformly bounded (Grénwall argument):

(gss NV +1)2 &) < C




QED



