Collective Bosonization for the Mean-Field Fermi Gas

Niels Benedikter

joint work with Phan Thành Nam, Marcello Porta, Benjamin Schlein, and Robert Seiringer

Università degli Studi di Milano

Hamilton operator of N identical spinless particles on the (fixed size) 3D torus:

$$H_N := \sum_{i=1}^N (-\Delta_i) + \lambda \sum_{1 \le i < j \le N} V(x_i - x_j) \qquad ext{with } V : \mathbb{R}^3 o \mathbb{R} \;.$$

Acts on the L^2 -space of antisymmetric wave functions of 3N variables

$$\psi(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(N)}) = \operatorname{sgn}(\sigma)\psi(x_1, x_2, \ldots, x_N) \qquad \forall \sigma \in S_N .$$

For reasonable potentials, the Hamiltonian is self-adjoint.

The spectrum $\sigma(H_N)$ is interpreted as excitation energies measurable in experiments.

Ground State Energy

The ground state energy is defined as

$$E_{N} := \inf \sigma(H_{N}) = \inf_{\substack{\psi \in L^{2}_{\mathsf{a}}(\mathbb{T}^{3N}) \\ \|\psi\|=1}} \langle \psi, H_{N}\psi \rangle .$$

How to compute E_N ? Define the reduced density matrices

$$\gamma^{(2)} := \frac{N!}{(N-2)!} \operatorname{tr}_{3,4,\dots,N} |\psi\rangle \langle\psi|, \qquad \gamma^{(1)} := \frac{1}{N-1} \operatorname{tr}_2 \gamma^{(2)}.$$

Then

$$\langle \psi, H_N \psi \rangle = \operatorname{tr} \left(-\Delta \gamma^{(1)} \right) + \frac{1}{2} \iint V(x_1 - x_2) \gamma^{(2)}(x_1, x_2; x_1, x_2) \, \mathrm{d}x_1 \mathrm{d}x_2 \; .$$

Ground State Energy

The ground state energy is defined as

$$E_{N} := \inf \sigma(H_{N}) = \inf_{\substack{\psi \in L^{2}_{a}(\mathbb{T}^{3N}) \\ \|\psi\|=1}} \langle \psi, H_{N}\psi \rangle .$$

How to compute E_N ? Define the reduced density matrices

$$\gamma^{(2)} := \frac{N!}{(N-2)!} \operatorname{tr}_{3,4,\dots,N} |\psi\rangle \langle\psi|, \qquad \gamma^{(1)} := \frac{1}{N-1} \operatorname{tr}_2 \gamma^{(2)}.$$

Then

$$\langle \psi, H_N \psi
angle = \operatorname{tr} \left(-\Delta \gamma^{(1)} \right) + \frac{1}{2} \iint V(x_1 - x_2) \gamma^{(2)}(x_1, x_2; x_1, x_2) \, \mathrm{d}x_1 \mathrm{d}x_2$$

So we simply minimize over $\gamma^{(2)}$?

The set of all 2-particle rdm is hard to characterize: N-representability problem.

This problem cannot be solved in full generality: H_N describes almost the entire variety of our daily lives, superconductors, neutron stars, our bodies...

Be more specific, look at well-defined physical situations!

This problem cannot be solved in full generality: H_N describes almost the entire variety of our daily lives, superconductors, neutron stars, our bodies...

Be more specific, look at well-defined physical situations!

Simplest possibility: gas at high density and with weak interaction.

 \sim We expect mean-field behavior: one particle moving through a continuous cloud generated by all the other particles.

This problem cannot be solved in full generality: H_N describes almost the entire variety of our daily lives, superconductors, neutron stars, our bodies...

Be more specific, look at well-defined physical situations!

Simplest possibility: gas at high density and with weak interaction.

 \sim We expect mean-field behavior: one particle moving through a continuous cloud generated by all the other particles.

Mathematical Model: Mean-Field Scaling Regime

- high density: fixed volume (torus) and N particles, $N \to \infty$.
- weak interation: $\lambda = N^{-1/3}$ because

$$\left\langle \sum_{i=1}^N \left(-\Delta_i
ight)
ight
angle \sim N^{5/3} \quad (ext{antisymmetry!}) \;, \qquad \left\langle \lambda \sum_{1 \leq i < j \leq N} V(x_i - x_j)
ight
angle \sim \lambda N^2 \;.$$

Leading Order Approximation: Hartree–Fock Theory

Hartree–Fock Theory = Restriction to Slater Determinants

Multiply the entire Hamiltonian by $\times \hbar^2$, with $\hbar := N^{-1/3}$:

$$H_N = \sum_{i=1}^N \left(-\hbar^2 \Delta_i\right) + \frac{1}{N} \sum_{1 \leq i < j \leq N} V(x_i - x_j) .$$

Convergence to the Hartree–Fock energy [Bach '92, Graf–Solovej '94]:

$$|E_N - E_N^{\mathsf{HF}}| = o(N)$$
, where $E_N^{\mathsf{HF}} := \inf_{\substack{\psi \text{ is Slater} \\ \text{determinant}}} \langle \psi, H_N \psi \rangle$.

I.e., theory has been restricted to the simplest antisymmetric states

$$\psi_{N} = \text{Slater determinant} = \bigwedge_{j=1}^{N} f_{j}, \qquad f_{j} \in L^{2}(\mathbb{T}^{3})$$

Hartree–Fock Theory = Restriction to Slater Determinants

Multiply the entire Hamiltonian by $\times \hbar^2$, with $\hbar := N^{-1/3}$:

$$H_N = \sum_{i=1}^N \left(-\hbar^2 \Delta_i\right) + \frac{1}{N} \sum_{1 \leq i < j \leq N} V(x_i - x_j) .$$

Convergence to the Hartree-Fock energy [Bach '92, Graf-Solovej '94]:

$$|E_N - E_N^{\mathsf{HF}}| = o(N)$$
, where $E_N^{\mathsf{HF}} := \inf_{\substack{\psi \text{ is Slater} \\ \text{determinant}}} \langle \psi, H_N \psi \rangle$.

I.e., theory has been restricted to the simplest antisymmetric states

$$\psi_{N} = \text{Slater determinant} = \bigwedge_{j=1}^{N} f_{j} , \qquad f_{j} \in L^{2}(\mathbb{T}^{3}) .$$

Furthermore, if we consider a Slater determinant and evolve it in time, it stays close to a Slater determinant, but with evolved "orbitals" $f_{j,t}$.

Stability of the Hartree–Fock Approximation

 $\begin{aligned} & \text{Theorem: [B-Porta-Schlein '14]} \\ & \text{Let } \psi_N = \bigwedge_{j=1}^N f_j \text{ and } i\hbar \partial_t \psi_{N,t} := H_N \psi_{N,t}. \\ & \text{Assume } \| [\hat{x}, \gamma^{(1)}] \|_{\text{tr}} , \| [\hat{p}, \gamma^{(1)}] \|_{\text{tr}} \leq CN\hbar. \ (*) \\ & \text{Then} \\ & \| \gamma_t^{(1)} - \gamma_t^{\text{HF}} \|_{\text{tr}} \leq N^{1/6} C_t \\ & \text{for } i\hbar \partial_t \gamma_t^{\text{HF}} = [h(\gamma_t^{\text{HF}}), \gamma_t^{\text{HF}}]. \end{aligned}$

Stability of the Hartree–Fock Approximation

- (*) can be directly verified for non-interacting fermions on torus/in harmonic trap; using semiclassical analysis also for arbitrary traps [Fournais-Mikkelsen '19].
- γ_t^{HF} is the 1-particle rdm of a Slater determinant $\bigwedge_{j=1}^N f_{j,t}$ with evolved orbitals; (HF) is a system of coupled non-linear equations for the orbitals $f_{j,t}$.
- Dirac-Frenkel principle shows that (HF) is optimal choice [B-Sok-Solovej '18].

Conclusion: Hartree–Fock theory (Slater determinants) is a good description of many quantities at leading order, for fermions in the mean–field regime.

However: HF theory produces some unphysical predictions, e.g., vanishing density of states at the Fermi energy (contradicting specific heat measurements in metals)!

 \sim We need to go to the next order. We need to do better than just Slater determinants and include non-trivial quantum correlations.

[Wigner '34]: Next order of the ground state energy (correlation energy)?

We accomplish a description of quantum correlations by bosonizing collective particle–hole excitations.

Next Order: Bosonization of Collective Excitations

The Almost–Optimal Slater Determinant

Hamiltonian in momentum representation, written with anti-commuting operators:

$$H_N := \hbar^2 \sum_{k \in \mathbb{Z}^3} |k|^2 a_k^* a_k + \frac{1}{N} \sum_{q,s,k \in \mathbb{Z}^3} \hat{V}(k) a_{q+k}^* a_{s-k}^* a_s a_q, \qquad \hbar = N^{-1/3}.$$

The Almost–Optimal Slater Determinant

Hamiltonian in momentum representation, written with anti-commuting operators:

$$H_N := \hbar^2 \sum_{k \in \mathbb{Z}^3} |k|^2 a_k^* a_k + rac{1}{N} \sum_{q,s,k \in \mathbb{Z}^3} \hat{V}(k) a_{q+k}^* a_{s-k}^* a_s a_q \,, \qquad \hbar = N^{-1/3} \,.$$

Introduce the Slater determinant of N plane waves

$$\Psi_{N} := \bigwedge_{k \in \mathcal{B}_{F}} f_{k}, \qquad \mathcal{B}_{F} = \text{Fermi ball} := \left\{ k \in \mathbb{Z}^{3} \mid |k| \leq N^{1/3} \left(\frac{3}{4\pi} \right)^{1/3} \right\}.$$

Its energy is almost exactly the Hartree–Fock energy [Gontier–Hainzl–Lewin '18]:

$$\langle \Psi_N, H_N \Psi_N
angle = E_N^{\mathsf{HF}} + \mathcal{O}(e^{-N^{1/3}}) \; .$$

(The optimal Slater determinant probably develops weak density waves.)

Separating the Slater Determinant: Particle–Hole Transformation R

Define the unitary map R on fermionic Fock space by

$$R \, \Omega := \Psi_N \;, \qquad \qquad R \, a_k^* \, R^* := \left\{ egin{array}{cc} a_k^* & k \in \mathcal{B}_F^c \ a_k & k \in \mathcal{B}_F \end{array}
ight.$$

Separating the Slater Determinant: Particle–Hole Transformation R

Define the unitary map R on fermionic Fock space by

$$R \,\Omega := \Psi_N , \qquad \qquad R \,a_k^* \,R^* := \left\{ egin{array}{cc} a_k^* & k \in \mathcal{B}_F^c \ a_k & k \in \mathcal{B}_F \end{array}
ight.$$

Write $\tilde{\Psi}_N = R\xi$. Expand R^*H_NR and normal-order

$$\langle \tilde{\Psi}_{N}, H_{N}\tilde{\Psi}_{N} \rangle = E_{N}^{\mathsf{HF}} + \langle \xi, \left(\underbrace{\hbar^{2} \sum_{p \in \mathcal{B}_{F}^{c}} p^{2} a_{p}^{*} a_{p} - \hbar^{2} \sum_{h \in \mathcal{B}_{F}} h^{2} a_{h}^{*} a_{h}}_{=: H^{\mathsf{kin}}} + \underbrace{Q}_{\mathsf{operators } a^{*}, a} \right) \xi \rangle$$

For $\xi = \Omega$: $\left(H^{\mathsf{kin}} + Q \right) \Omega = 0$.

Separating the Slater Determinant: Particle–Hole Transformation R

Define the unitary map R on fermionic Fock space by

$$R \,\Omega := \Psi_N \;, \qquad \qquad R \,a_k^* \,R^* := \left\{ egin{array}{cc} a_k^* & k \in \mathcal{B}_F^c \ a_k & k \in \mathcal{B}_F \end{array}
ight.$$

Write $\tilde{\Psi}_N = R\xi$. Expand R^*H_NR and normal-order

$$\langle \tilde{\Psi}_{N}, H_{N}\tilde{\Psi}_{N} \rangle = E_{N}^{\mathsf{HF}} + \langle \xi, \left(\underbrace{\hbar^{2} \sum_{p \in \mathcal{B}_{F}^{c}} p^{2} a_{p}^{*} a_{p} - \hbar^{2} \sum_{h \in \mathcal{B}_{F}} h^{2} a_{h}^{*} a_{h}}_{=: H^{\mathsf{kin}}} + \underbrace{Q}_{\mathsf{operators } a^{*}, a} \right) \xi \rangle$$

For $\xi = \Omega$: $\left(H^{\mathsf{kin}} + Q \right) \Omega = 0$.

Goal: a quadratic approximation to the excitation Hamiltonian $H^{kin} + Q$. (Quadratic Hamiltonians can be diagonalized by Bogoliubov transformations.)

Collective Particle–Hole Pairs

Observe: if we introduce collective pair operators

- $b_k^* := \sum_{\substack{p \in \mathcal{B}_F^c \ h \in \mathcal{B}_F}} \delta_{p-h,k} a_p^* a_h^*$
- *p* "particle" outside the Fermi ball*h* "hole" inside the Fermi ball

then

$$Q=rac{1}{N}\sum_{k\in\mathbb{Z}^3}\hat{V}(k)\Big(2b_k^*b_k+b_k^*b_{-k}^*+b_{-k}b_k\Big)+\mathcal{O}\Big(rac{\mathcal{N}^2}{N}\Big)\,.$$

This is convenient because the b_k^* and b_k have approximately bosonic commutators:

$$[b_k^*, b_l^*] = 0$$
, $[b_l, b_k^*] = \delta_{k,l} n_k^2 + \mathcal{E}(k, l)$.

Collective Particle–Hole Pairs

Observe: if we introduce collective pair operators

- $b_k^* := \sum_{\substack{p \in \mathcal{B}_F^c \ h \in \mathcal{B}_F}} \delta_{p-h,k} a_p^* a_h^*$
- *p* "particle" outside the Fermi ball*h* "hole" inside the Fermi ball

then

$$Q=rac{1}{N}\sum_{k\in\mathbb{Z}^3}\hat{V}(k)\Big(2b_k^*b_k+b_k^*b_{-k}^*+b_{-k}b_k\Big)+\mathcal{O}\Big(rac{\mathcal{N}^2}{N}\Big)\,.$$

This is convenient because the b_k^* and b_k have approximately bosonic commutators:

$$[b_k^*, b_l^*] = 0$$
, $[b_l, b_k^*] = \delta_{k,l} n_k^2 + \mathcal{E}(k,l)$.

But how to express H^{kin} through pair operators?

Localization to Patches – Linearizing the Kinetic Energy

Fermi ball \mathcal{B}_F

[Benfatto–Gallavotti '90] [Haldane '94] [Fröhlich–Götschmann–Marchetti '95]

[Kopietz et al. '95]

Localize to M = M(N) patches near the Fermi surface,

$$b_{\alpha,k}^* := \frac{1}{n_{\alpha,k}} \sum_{\substack{p \in \mathcal{B}_F^c \cap B_\alpha \\ h \in \mathcal{B}_F \cap B_\alpha}} \delta_{p-h,k} a_p^* a_h^*$$

where $n_{\alpha,k}$ is for normalization such that $\|b_{\alpha,k}^*\Omega\| = 1$.

Localization to Patches – Linearizing the Kinetic Energy

Fermi ball \mathcal{B}_F

[Benfatto–Gallavotti '90] [Haldane '94] [Fröhlich–Götschmann–Marchetti '95] [Kopietz et al. '95] Localize to M = M(N) patches near the Fermi surface,

$$b_{\alpha,k}^* := \frac{1}{n_{\alpha,k}} \sum_{\substack{p \in \mathcal{B}_F^c \cap B_\alpha \\ h \in \mathcal{B}_F \cap B_\alpha}} \delta_{p-h,k} a_p^* a_h^*$$

where $n_{\alpha,k}$ is for normalization such that $\|b_{\alpha,k}^*\Omega\| = 1$.

Linearize kinetic energy around patch center ω_{α} :

 $H^{\mathrm{kin}}b_{\alpha,k}^{*}\Omega\simeq 2\hbar|k\cdot\hat{\omega}_{\alpha}|b_{\alpha,k}^{*}\Omega$

as if $b^*_{\alpha,k}$ was a mode of a harmonic oscillator. (c. f., [Lieb–Mattis '65] for the 1D Luttinger model)

$$H^{\rm kin} \simeq \sum_{k \in \mathbb{Z}^3} \sum_{\alpha=1}^M 2\hbar u_\alpha(k)^2 b_{\alpha,k}^* b_{\alpha,k} \,, \quad u_\alpha(k)^2 := |k \cdot \hat{\omega}_\alpha| \,.$$

Quadratic Effective Hamiltonian

Recall

$$Q = rac{1}{N} \sum_{k \in \mathbb{Z}^3} \hat{V}(k) \left(2b_k^* b_k + b_k^* b_{-k}^* + b_{-k} b_k
ight)$$

Decompose

$$b_k^* = \sum_lpha n_{lpha,k} b_{lpha,k}^* + ext{lower order}$$
 .

Quadratic Effective Hamiltonian

Recall

$$Q = \frac{1}{N} \sum_{k \in \mathbb{Z}^3} \hat{V}(k) \left(2b_k^* b_k + b_k^* b_{-k}^* + b_{-k} b_k \right)$$

Decompose

$$b_k^* = \sum_{lpha} n_{lpha,k} b_{lpha,k}^* + ext{lower order}$$
 .

Normalization:

 $n_{lpha,k}^2 = \#$ p-h pairs in patch B_lpha with momentum k $\simeq rac{4\pi N^{2/3}}{M} |k \cdot \hat{\omega}_lpha| = rac{4\pi N^{2/3}}{M} u_lpha(k)^2$.

Quadratic Effective Hamiltonian

Recall

$$Q = rac{1}{N} \sum_{k \in \mathbb{Z}^3} \hat{V}(k) \left(2b_k^* b_k + b_k^* b_{-k}^* + b_{-k} b_k
ight)$$

Decompose

$$b_k^* = \sum_{lpha} n_{lpha,k} b_{lpha,k}^* + ext{lower order}$$
 .

Normalization:

$$n_{lpha,k}^2 = \# p$$
-h pairs in patch B_lpha with momentum $\simeq rac{4\pi N^{2/3}}{M} |k\cdot \hat{\omega}_lpha| = rac{4\pi N^{2/3}}{M} u_lpha(k)^2 \;.$

Effective Bosonic Hamiltonian

$$H^{\text{eff}} = \hbar \sum_{k \in \mathbb{Z}^3} \left[\sum_{\alpha} u_{\alpha}(k)^2 b_{\alpha,k}^* b_{\alpha,k} + \frac{\hat{V}(k)}{M} \sum_{\alpha,\beta} \left(u_{\alpha}(k) u_{\beta}(k) b_{\alpha,k}^* b_{\beta,k} + u_{\alpha}(k) u_{\beta}(k) b_{\alpha,k}^* b_{\beta,-k}^* + \text{h.c.} \right) \right]$$

k

12

Diagonalization of the Bosonic Hamiltonian

We can write
$$H^{\mathrm{eff}} = \hbar \sum_{k \in \mathbb{Z}^3} \left[h^{\mathrm{eff}}(k) - \frac{1}{2} \operatorname{tr}(D+W) \right]$$

where (with k-dependence suppressed)

$$h^{\text{eff}} = \frac{1}{2} \begin{pmatrix} (b^*)^T & b^T \end{pmatrix} \begin{pmatrix} D+W & \widetilde{W} \\ \widetilde{W} & D+W \end{pmatrix} \begin{pmatrix} b \\ b^* \end{pmatrix}, \qquad b = \begin{pmatrix} \vdots \\ b_{\alpha} \\ \vdots \end{pmatrix},$$
$$D = \begin{pmatrix} \text{diag}(u_{\alpha}^2) & 0 \\ 0 & \text{diag}(u_{\alpha}^2) \end{pmatrix}, \quad W = \hat{V} \begin{pmatrix} |u\rangle\langle u| & 0 \\ 0 & |u\rangle\langle u| \end{pmatrix}, \quad \widetilde{W} = \hat{V} \begin{pmatrix} 0 & |u\rangle\langle u| \\ |u\rangle\langle u| & 0 \end{pmatrix}.$$

The model is solved (i. e., all excitation energies are known) if we can find linear combinations of b- and b^* -operators with unchanged commutator relations such that

$$h^{\mathsf{eff}} = \sum_{\gamma=1}^M e_\gamma \left(ilde{b}_\gamma^* \, ilde{b}_\gamma + rac{1}{2}
ight) \;, \quad e_\gamma \in \mathbb{R} \;.$$

13

Bogoliubov Transformation

matrices can be found graphically.

h

TI

Linear transformations of the operators that leave the commutator relations invariant are called Bogoliubov transformations. They can be written as

$$b = \frac{1}{2}(S_1 + S_2)\tilde{b} + \frac{1}{2}(S_1 - S_2)\tilde{b}^* , \qquad S = \begin{pmatrix} S_1 & 0\\ 0 & S_2 \end{pmatrix} \text{ a symplectic matrix .}$$

We construct [B '19] S such that
$$h^{\text{eff}} = \sum_{\gamma,\delta=1}^{M} E_{\gamma,\delta} \tilde{b}^*_{\gamma} \tilde{b}_{\delta} + \frac{1}{2} \operatorname{tr} E ,$$
$$E \simeq \sqrt{\operatorname{diag}(u_{\alpha}^2) + \hat{V}|u\rangle\langle u|} .$$

The eigenvalues of "diagonal + rank-one"

Orange: $y = \frac{1}{\hat{V}(k)}$. Qualitative change for Coulomb singularity $\hat{V}(k) = \frac{1}{|k|^2}$ at $k \to 0$.

Spectrum

- plasmon mode (collective oscillation) emerges
- continuous spectrum qualitatively unchanged

A non-perturbative approach to screening and Fermi liquid theory?

Rigorous Result: Upper Bound on the Ground State Energy

Theorem: [B-Nam-Porta-Schlein-Seiringer '19]
Let
$$\hat{V}(k)$$
 be non-negative, bounded, and compactly supported. Then
 $E_N \leq E_N^{HF} + \hbar \sum_{k \in \mathbb{Z}^3} |k| \left[\int_0^\infty \log \left(1 + \hat{V}(k) \left(1 - \lambda \arctan \lambda^{-1} \right) \right) d\lambda - \frac{1}{4} \hat{V}(k) \right] + \mathcal{O}(\hbar N^{-1/27}).$ This is $\frac{1}{2} \operatorname{tr} [E - (D + W)]$ as in the bosonic H^{eff} .

Theorem: [B-Nam-Porta-Schlein-Seiringer '19]
Let
$$\hat{V}(k)$$
 be non-negative, bounded, and compactly supported. Then
 $E_N \leq E_N^{\mathsf{HF}} + \hbar \sum_{k \in \mathbb{Z}^3} |k| \left[\int_0^\infty \log \left(1 + \hat{V}(k) \left(1 - \lambda \arctan \lambda^{-1} \right) \right) d\lambda - \frac{1}{4} \hat{V}(k) \right] + \mathcal{O}(\hbar N^{-1/27}).$ This is $\frac{1}{2} \operatorname{tr} [E - (D + W)]$ as in the bosonic H^{eff} .

- Non-rigorously obtained by [Macke '50, Bohm-Pines '53, Gell-Mann-Brueckner '57, Sawada et al. '57]. Historical breakthrough!
- [Hainzl–Porta–Rexze '18] obtained a rigorous lower bound to second order in \hat{V} , $E_N \ge E^{\mathsf{HF}} - \hbar \frac{\pi}{2} (1 - \log 2) \sum_{k \in \mathbb{Z}^3} |k| \hat{V}(k)^2 + \mathcal{O}(\hat{V}^3)$.

Proof: Justification of the Bosonic Approximation

Ground State in the Bosonic Picture

The previously introduced Bogoliubov transformation has an explicit formula:

$$T = \exp\left(\sum_{k \in \mathbb{Z}^3} \sum_{\alpha,\beta=1}^M K(k)_{\alpha,\beta} b^*_{\alpha,k} b^*_{\beta,-k} - \mathsf{h.c.}\right), \quad K(k) = \log|S_1|$$

and thus, in the bosonic picture, the ground state of H^{eff} is given by

$$\xi_{\sf gs} = T\Omega$$
 .

Makes sense even if the b^* -operators are actually pairs of fermionic operators. Maybe not optimal, but we can still use it as a trial state. General idea: bosonic approximation is good if the number of occupied fermionic modes is much smaller than the number of available fermionic modes (per patch).

Lemma: We have approximately bosonic commutators:

$$[b^*_{\alpha,k}, b^*_{\beta,l}] = 0 = [b_{\alpha,k}, b_{\beta,l}] \qquad \text{and} \qquad [b_{\alpha,k}, b^*_{\beta,l}] = \delta_{\alpha,\beta} \Big(\delta_{k,l} + \mathcal{E}_{\alpha}(k, l) \Big) \,,$$

where for all ψ in fermionic Fock space the error operator $\mathcal{E}_{\alpha}(k, l)$ is bounded by

$$\|\mathcal{E}_{lpha}(k,l)\psi\| \leq rac{2}{n_{lpha,k}n_{lpha,l}}\|\mathcal{N}\psi\| \qquad (\mathcal{N}= ext{fermionic number operator}).$$

Approximate Bogoliubov Transformation

Lemma: T acts as an approximate Bogoliubov transformation, i.e.,

$$T^*b_{lpha,k}T = \sum_{eta=1}^M rac{1}{2}(S_1+S_2)_{lpha,eta}b_{eta,k} + \sum_{eta=1}^M rac{1}{2}(S_1-S_2)_{lpha,eta}b_{eta,-k}^* + \mathfrak{E}_{lpha,k}$$

where for all ψ in fermionic Fock space the error operator $\mathfrak{E}_{\alpha,k}$ is bounded by

$$\left[\sum_{\alpha} \|\mathfrak{E}_{\alpha,k}\psi\|^2\right]^{1/2} \leq \frac{C}{\min_{\alpha} n_{\alpha,k}^2} \|(\mathcal{N}+2)^{3/2}\psi\| \ .$$

Lemma: The number of fermions is uniformly bounded (Grönwall argument):

$$\langle \xi_{\mathsf{gs}}, \left(\mathcal{N}+1
ight)^3 \xi_{\mathsf{gs}}
angle \leq \mathcal{C} \; .$$

QED