
Correlation Energy of a Weakly–Interacting Fermi Gas

Niels Benedikter
joint work with Phan Thành Nam, Marcello Porta, Benjamin Schlein, and Robert Seiringer

Università degli Studi di Milano

1



Quantum System of N Fermions

Hamilton operator of N identical spinless particles on the (fixed size) 3D torus:

HN :=
N∑

i=1
(−∆i ) + λ

∑
1≤i<j≤N

V (xi − xj) with V : R3 → R .

Acts on the L2–space of antisymmetric wave functions of 3N variables

ψ(xσ(1), xσ(2), . . . , xσ(N)) = sgn(σ)ψ(x1, x2, . . . , xN) ∀σ ∈ SN .

For reasonable potentials, the Hamiltonian is self–adjoint.

spec (HN) is interpreted as excitation energies measurable in experiments.

2



Ground State Energy

The ground state energy is defined as

EN := inf spec (HN) = inf
ψ∈L2

a(T3N)
‖ψ‖=1

〈ψ,HNψ〉 .

How to compute EN? Define the reduced density matrices

γ(2) := N!
(N − 2)! tr3,4,...N |ψ〉〈ψ| , γ(1) := 1

N − 1 tr2 γ(2) .

Then

〈ψ,HNψ〉 = tr
(
−∆γ(1)

)
+ 1

2

∫∫
V (x1 − x2)γ(2)(x1, x2; x1, x2) dx1dx2 .

So we simply minimize over γ(2)?

The set of all 2-particle rdm is hard to characterize: N-representability problem.
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Mean–Field Regime

This problem cannot be solved in full generality: HN describes almost the entire variety
of our daily lives, superconductors, neutron stars, our bodies. . .

Be more specific, look at well–defined physical situations!

Simplest possibility: high density and with weak interaction.
; We expect mean–field behavior: one particle moving through a continuous cloud
generated by all the other particles.
Mathematical Model: Mean–Field Scaling Regime

• high density: fixed volume (torus) and N particles, N →∞.
• weak interation: λ = N−1/3 because

〈 N∑
i=1

(−∆i )
〉
∼ N5/3 (antisymmetry!) ,

〈
λ

∑
1≤i<j≤N

V (xi − xj)
〉
∼ λN2 .
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Leading Order Approximation:
Hartree–Fock Theory
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Hartree–Fock Theory = Restriction to Slater Determinants

Multiply the entire Hamiltonian by ×~2, with ~ := N−1/3:

HN =
N∑

i=1

(
−~2∆i

)
+ 1

N
∑

1≤i<j≤N
V (xi − xj) .

Convergence to the Hartree–Fock energy [Bach ’92, Graf–Solovej ’94]:∣∣EN − EHF
N
∣∣ = o(N) , where EHF

N := inf
ψ is Slater
determinant

〈ψ,HNψ〉 .

Achieved restriction to simplest fermionic states: antisymmetrized tensor products,

ψN = Slater determinant =
N∧

j=1
fj , fj ∈ L2(T3) .

Moreover: Consider a Slater determinant and evolve it in time — it stays close to a
Slater determinant, but with orbitals fj,t evolved under the time–dependent
Hartree–Fock equation [B–Porta–Schlein ’14]. This is optimal [B–Sok–Solovej ’18].
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The Almost–Optimal Slater Determinant

Introduce the Slater determinant of N plane waves

ΨN :=
∧

k∈BF

fk , BF = Fermi ball :=
{
k ∈ Z3 | |k| ≤ N1/3

( 3
4π

)1/3
}
.

For the translation–invariant situation on the torus [Gontier–Hainzl–Lewin ’18]:

Epw
N := 〈ΨN ,HNΨN〉 = EHF

N +O(e−N1/3) .

To summarize:
EN < EHF

N ' Epw
N .

[Wigner ’34]: How to compute the correlation energy EN − EHF
N (or EN − Epw

N )?

Do better than antisymm. tensor products, include non–trivial quantum correlations!
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Describing Correlations by Bosonization
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Separating the Slater Determinant

Hamiltonian in momentum representation, written with anti-commuting operators:

HN := ~2
∑

k∈Z3

|k|2a∗kak + 1
N

∑
q,s,k∈Z3

V̂ (k)a∗q+ka∗s−kasaq , ~ = N−1/3 .

Define the unitary map R (“particle–hole transformation”) on fermionic Fock space by

R |0〉 := ΨN , R a∗k R∗ :=
{

a∗k k ∈ Bc
F

ak k ∈ BF

Write Ψ̃N = Rξ, expand R∗HNR, normal–order: with e(p) :=
∣∣~2|p|2 − (3/4π)2/3

∣∣ get
〈Ψ̃N ,HNΨ̃N〉 = EHF

N + 〈ξ,
[ ∑

p∈Bc
F

e(p)a∗pap +
∑

h∈BF

e(h)a∗hah

︸ ︷︷ ︸
=: Hkin

+
∑

h∈BF

Q

︸ ︷︷ ︸
quartic in

operators a∗, a

]
ξ〉

Slater determinant corresponds to ξ = |Ω〉: in particular (Hkin + Q) |0〉 = 0.
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Collective Particle–Hole Pairs

Key observation: if we introduce collective pair creation operators

b∗k :=
∑

p∈Bc
F

h∈BF

δp−h,ka∗pa∗h
p “particle” outside the Fermi ball
h “hole” inside the Fermi ball

then
Q = 1

N
∑

k∈Z3

V̂ (k)
(
2b∗kbk + b∗kb∗−k + b−kbk

)
+ Qnon-paired .

This is convenient because the b∗k and bk have approximately bosonic commutators:

[b∗k , b∗l ] = 0 , [bl , b∗k ] = δk,ln2k +����XXXXE(k, l) .

But how to express Hkin through pair operators?
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Linearizing the Kinetic Energy Locally in Patches

Fermi ball BF

ωα

[Benfatto–Gallavotti ’90]

[Haldane ’94]

Localize to M = M(N) patches near the Fermi surface,

b∗α,k := 1
nα,k

∑
p∈Bc

F∩Bα
h∈BF∩Bα

δp−h,ka∗pa∗h

with nα,k such that ‖b∗α,k |0〉‖ = 1.

Linearize kinetic energy around patch center ωα:

Hkinb∗α,k |0〉 ' 2~|k · ω̂α|b∗α,k |0〉

Approximate as if b∗α,k was a harmonic oscillator mode:

Hkin '
∑

k∈Z3

M∑
α=1

2~uα(k)2b∗α,kbα,k , uα(k)2 := |k · ω̂α|

(c. f., [Lieb–Mattis ’65] for the 1D Luttinger model).
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Quadratic Effective Hamiltonian

Recall
Q = 1

N
∑

k∈Z3

V̂ (k)
(
2b∗kbk + b∗kb∗−k + b−kbk

)
+Qnon-paired

Decompose
b∗k =

∑
α

nα,kb∗α,k + lower order .

Normalization:
n2α,k = #p-h pairs in patch Bα with momentum k

' 4πN2/3

M |k · ω̂α| = 4πN2/3

M uα(k)2 .

kωα

Effective Bosonic Hamiltonian

Heff= ~
∑

k∈Z3

[∑
α

uα(k)2b∗α,kbα,k+ V̂ (k)
M

∑
α,β

(
uα(k)uβ(k)b∗α,kbβ,k+uα(k)uβ(k)b∗α,kb∗β,−k+h.c.

)]
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Diagonalization of the Bosonic Hamiltonian

We can write Heff = ~
∑

k∈Z3

[
heff(k)− 1

2 tr(D(k) + W (k))
]

where

heff = 1
2
(

(b∗)T bT
)(D + W W̃

W̃ D + W

)(
b
b∗

)
, b =


...
bα
...

 ,

D =
(
diag(u2α) 0

0 diag(u2α)

)
, W = V̂

(
|u〉〈u| 0
0 |u〉〈u|

)
, W̃ = V̂

(
0 |u〉〈u|
|u〉〈u| 0

)
.

The model is solved (spectrum computed) if we can find linear combinations of b– and
b∗–operators, called b̃, with the same CCR such that

heff =
M∑
γ=1

eγ
(
b̃∗γ b̃γ + 1

2

)
, eγ ∈ R .
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Bogoliubov Transformation

These are Bogoliubov transformations (or complexified symplectic transformations).

We achieve diagonalization up to a one–particle unitary [B ’19] (which is sufficient):

heff =
M∑

γ,δ=1
Eγ,δ b̃∗γ b̃δ + 1

2 tr E , E '
√
diag(u2α) + V̂ |u〉〈u| ≥ 0 .

In the limit of large number of patches, M →∞, the correlation energy becomes

~
∑

k∈Z3

1
2 tr (E (k)− D(k)−W (k))

→ ERPA
N := ~

∑
k∈Z3

|k|
[∫ ∞

0
log
(
1 + V̂ (k)

(
1− λ arctanλ−1

))
dλ− 1

4 V̂ (k)
]
.

Predicted by partial resumm. of pert. theory [Macke ’50, Gell-Mann–Brueckner ’57].
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Rigorous Result: Correlation Energy
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Leading Order of the Correlation Energy

Theorem: [B–Nam–Porta–Schlein–Seiringer ’19, ’20]

Let V̂ (k) be non-negative and compactly supported with sufficiently small ‖V̂ ‖`∞ .
Then as number of particles N →∞ we have

EN = EHF
N + ERPA

N +O(~1+ 1
48 ) (~ = N−1/3) .

The upper bound follows from a computation with a trial state (variational principle).

Proof of the lower bound is the rest of the talk.

Remarks: [Hainzl–Porta–Rexze ’19] obtained a rigorous lower bound to second order
in V̂ ,

EN ≥ EHF − ~
π

2 (1− log 2)
∑

k∈Z3

|k|V̂ (k)2 +O(V̂ 3) .
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Proof of the Lower Bound
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Explicit Diagonalization of the Hamiltonian

The previously introduced Bogoliubov transformation has an explicit formula:

T = exp
( ∑

k∈Z3

M∑
α,β=1

K (k)α,βb∗α,kb∗β,−k − h.c.
)
, K (k) = log|S1|

and thus, in the exactly bosonic picture,

T heffT ∗ =
M∑

γ,δ=1
Eγ,δ b∗γ bδ + 1

2 tr E ≥ 1
2 tr E .

Makes sense even if the b∗–operators are actually pairs of fermionic operators.

To control: gapless excitations, non–bosonizable terms, errors in approximate CCR.
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Strategy (1/2)

1. A–priori estimate: ‖b(k)ψ‖ ≤ CN1/2‖H1/2
kin ψ‖ [Hainzl–Porta–Rexze ’19]. Thus

Hkin ≤ C(Hkin + Q) ≤ ~ .

2. Bound on the number operator: |{lattice points on the sphere}| ≤ CεN1/3+ε, thus

N :=
∑
i∈Z3

a∗i ai ≤
∑

e(i)≤N−θ
1+

∑
e(i)>N−θ

a∗i ai
θ=2/3
≤ CN1/3+ε +N2/3Hkin = O(N1/3) .

3. IMS localization in Fock space to control also powers of N .
4. Removing gapless pair excitations (momentum approximately parallel to Fermi

surface) and corridors from Hamiltonian using Hkin–, N–bounds.
5. Approximate CCR:

[bα,k , b∗β,l ] = δα,β (δk,l + Eα(k, l)) , Eα(k, l) bounded by N .

6. Tbα,kT ∗ =
∑
γ cosh(K )α,γbγ,k +

∑
γ sinh(K )α,γb∗γ,k + Eα,k (almost bosonic BT).
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Strategy (2/2)

7. Major improvement I: boson bounds avoiding the uncontrollable energy gap

‖bα,kψ‖ ≤ ‖N 1/2
δ ψ‖ where Nδ :=

∑
e(i)>1

4N−1/3−δ
a∗i ai , δ to be optimized.

8. Major improvement II: strong control on the Bogoliubov kernel K (k)

|K (k)α,β| ≤ C
M min

{
uα(k)
uβ(k) ,

uβ(k)
uα(k)

}
. (1)

9. Major improvement III: strong bound on linearization of kinetic energy permits
M � N2δ instead of M � N1/3.

10. Major improvement IV: non–bosonizable terms

partial transformation & completing the square⇒ Qnon–pair ≥ −‖V̂ ‖`∞Hkin .

11. Hkin +Q = Hkin−HB
kin +HB

kin +Q. We have T
(
Hkin − HB

kin

)
T ∗ '

(
Hkin − HB

kin

)
,

HB
kin +Q =

∑M
γ,δ=1

Eγ,δ b̃∗γ b̃δ + 1
2 tr E ≥ HB

kin−‖V̂ ‖`∞Hkin + 1
2 tr E using (1).
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Kinetic bound [Hainzl–Porta–Rexze ’19]

Proof of the kinetic bound.

‖b(k)ψ‖ ≤
∑

p∈Bc
F

h∈BF

δp−h,k‖ahapψ‖ =
∑

p∈Bc
F

h∈BF

δp−h,k
1√

e(p) + e(h)

√
e(p) + e(h)‖ahapψ‖

≤
[ ∑

p∈Bc
F

h∈BF

δp−h,k
1

e(p) + e(h)

]1/2[ ∑
p∈Bc

F
h∈BF

δp−h,k(e(p) + e(h))‖ahapψ‖2
]1/2

≤
[ ∑

p∈Bc
F

h∈BF

δp−h,k
1

e(p) + e(h)

]1/2[ ∑
p∈Bc

F
h∈BF

δp−h,k
(
e(p)‖apψ‖2 + e(h)‖ahψ‖2

)]1/2

≤ CN1/2‖H1/2
kin ψ‖ .

The sum is singular near the Fermi surface – estimate by CN1/2 requires use of number
theoretic results about counting of lattice points! 17



Removing Gapless Excitations
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Removing Gapless Excitations

Introduce a cut–off: instead of
b∗k =

∑
α=1M nα,kb∗α,k consider

b∗k '
∑
α∈I+

k

nα,kb∗α,k ,

where

I+
k :=

{
α ∈ {1, 2, . . . ,M} :

k · ω̂α > N−δ
}
.

Difference can be controlled by

(. . .) ≤ CN1/2−δ/2‖H1/2
kin ψ‖ .
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Boson bounds avoiding the uncontrollable energy gap

Proof of ‖bα,kψ‖ ≤ ‖N 1/2
δ ψ‖. Recall Nδ :=

∑
e(i)>1

4N−1/3−δ
a∗i ai , δ as in the cut–off.

‖bα,kψ‖ ≤
1

nα(k)
∑

p∈Bc
F

h∈BF

δp−h,k‖ahapψ‖

≤ 1
nα(k)

∑
p∈Bc

F
h∈BF

δp−h,k min{‖apψ‖, ‖ahψ‖} .

Due to α ∈ I+
k we have k · ω̂α > N−δ, thus

e(p) + e(h) = ~2p2 − ~2h2 = ~2
(
p2 − (p − k)2

)
= ~2

(
2p · k − k2

)
' ~22ωα · k = 2( 3

4π )1/3~k · ω̂α ≥
1
2N
−1/3−δ .

Thus e(p) > 1
4N
−1/3−δ or e(h) > 1

4N
−1/3−δ. “Lower bound on excitation energy”.
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Linearization of the Kinetic Energy

Instead of linearizing Hkin, only linearize its commutator, re-
taining info about “away from the energy gap” as last bound.

[Hkin, b∗α,k ] = 1
nα(k)

∑
p∈Bc

F∩Bα
h∈BF∩Bα

(e(p) + e(h)) δp−h,ka∗pa∗h

= 2~( 3
4π )1/3k · ω̂αb∗α,k + error

error ∼
(
e(p) + e(p − k)− 2~( 3

4π )1/3k · ω̂α
)

= ~2
(
2k · (p − ωα)− k2

)
≤ ~2C |p − ωα| ≤ ~2C diam(Bα) ≤ ~2

N1/3
√
M

= ~O(M−1/2) .

Error bounded by ~N 1/2
δ M−1/2 � ~. Major improvement: M � Nδ is sufficient.
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Non–Bosonizable Terms

Non–bosonizable terms. Positive non–pair term + coupling to pairs

Qnon–pair = 1
N
∑

k∈Z3

V̂ (k) (D∗(k)D(k) + D∗(k)b(k) + b(k)D∗(k)) .

Of course

D∗(k)b(k) ≥ −1
2D
∗(k)D(k)− 1

2b
∗(k)b(k) ≥ −1

2D
∗(k)D(k)− 1

2Hkin .

To use this bound we need to first transform the b–operators with the Bogoliubov
transformation, and afterward use a similar bound. Only possible because

|K (k)α,β| ≤ C
M min

{
uα(k)
uβ(k) ,

uβ(k)
uα(k)

}
⇒

∑
α

Kα,βnα ≤ Cnβ .

allows us to remove the cosh(K ) and sinh(K ) from the transformed expression.
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QED


