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Quantum System of N Fermions

Hamilton operator of N identical spinless particles on the (fixed size) 3D torus:

N
Hy=Y (A)+X > V(x-x) with V:R*>R.
=i 1<i<j<N

Acts on the L?-space of antisymmetric wave functions of 3N variables

w(xa'(l)a X0(2)7 s 7X0'(N)) = sgn(0)¢(x1,x2, s 7XN) Vo € SN .

For reasonable potentials, the Hamiltonian is self-adjoint.

spec (Hy) is interpreted as excitation energies measurable in experiments.



Ground State Energy

The ground state energy is defined as

Eyn :=infspec(Hy) = inf (¢, Hy) .
YELZ(TN)
llll=1
How to compute Ep? Define the reduced density matrices
N! 1
.- 7" 4 (1) . tro~(3)
= o r34,.NU)W], = gty

Then
_ @) , L @) .
(¥, Hyy) = tr (—A'y ) + 5 V(x1 — x2)7'“ (x1, x2; X1, x2) dxydxo .
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How to compute Ep? Define the reduced density matrices
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Then
_ @) , L @) .
(¥, Hyy) = tr (—A'y ) + 5 V(x1 — x2)7'“ (x1, x2; X1, x2) dxydxo .

So we simply minimize over 7(2)?

The set of all 2-particle rdm is hard to characterize: N-representability problem.
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Mean-Field Regime

This problem cannot be solved in full generality: Hpy describes almost the entire variety

of our daily lives, superconductors, neutron stars, our bodies. ..
Be more specific, look at well-defined physical situations!

Simplest possibility: high density and with weak interaction.
~» We expect mean—field behavior: one particle moving through a continuous cloud

generated by all the other particles.
Mathematical Model: Mean-Field Scaling Regime

e high density: fixed volume (torus) and N particles, N — cc.
e weak interation: A = N~1/3 because

<2N:(—A,-)> ~ N°/3  (antisymmetry!) , <)\ Z V(xi — XJ)> ~ AN?.

i=1 1<i<j<N



Leading Order Approximation:
Hartree—Fock Theory



Hartree—Fock Theory = Restriction to Slater Determinants

Multiply the entire Hamiltonian by x %2, with i := N~1/3:

Hy = EN: (—th,') + % Z V(X,' = XJ) .

i=1 1<i<j<N
Convergence to the Hartree-Fock energy [Bach '92, Graf-Solovej '94]:
|En — ENFl = o(N),  where EfiF .= inf (s, Hy) .
1 is Slater
determinant
Achieved restriction to simplest fermionic states: antisymmetrized tensor products,
N
1y = Slater determinant = /\ fi f; € L2(T3).
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Multiply the entire Hamiltonian by x %2, with i := N~1/3:

Hy = EN: (—th,') + % Z V(X,' = XJ) .

i=1 1<i<j<N
Convergence to the Hartree-Fock energy [Bach '92, Graf-Solovej '94]:
|En — ENFl = o(N),  where EfiF .= inf (s, Hy) .

1 is Slater
determinant

Achieved restriction to simplest fermionic states: antisymmetrized tensor products,

N
1y = Slater determinant = /\ fi, f; € L2(T3).
Jj=1
Moreover: Consider a Slater determinant and evolve it in time — it stays close to a

Slater determinant, but with orbitals f; ; evolved under the time—dependent
Hartree—Fock equation [B—Porta—Schlein '14]. This is optimal [B-Sok-Solovej '18]. 5



The Almost—Optimal Slater Determinant

Introduce the Slater determinant of N plane waves

3 1/3

Wy:= A fi,  Br = Fermiball := {k e Z3 | |k| < N/3 () .

41
keBF

For the translation—invariant situation on the torus [Gontier-Hainzl-Lewin '18]:

EPY .= (Wy, HyWp) = ERF + 0(e™ V) .

To summarize:
Ep< E=ERSS



The Almost—Optimal Slater Determinant

Introduce the Slater determinant of N plane waves

1/3
Uy = A f, Br = Fermi ball := {k e Z3 | |k| < NY/3 (43) }
kEBr &

For the translation—invariant situation on the torus [Gontier-Hainzl-Lewin '18]:
ERY == (Wn, HyWa) = ERF + O(e V).

To summarize:
Ep< E=ERSS

[Wigner '34]: How to compute the correlation energy Ey — ENF (or Ey — ER")?

Do better than antisymm. tensor products, include non—trivial quantum correlations! 6



Describing Correlations by Bosonization



Separating the Slater Determinant

Hamiltonian in momentum representation, written with anti-commuting operators:
1 a
32 2 -1/3
Hy =1 Y |k|?aja + 3 S V(k)ah i aigasag,  h= N3
kez3 q,s,keZ3
Define the unitary map R (“particle-hole transformation”) on fermionic Fock space by
ay, k € B

R|0) := Wy, Ra; R* :=
|> N k {ak k € BF



Separating the Slater Determinant

Hamiltonian in momentum representation written with anti-commuting operators:

2 2 * _ n-1/3
Hy :=h Z|k| akak—i—— Z V(k )35+ k3s—k3saq » h= N3
kez3 q,s,keZ3

Define the unitary map R (“particle-hole transformation”) on fermionic Fock space by

* k c
R(0) = Wy, RatR =] % € B¢
ak k € BF
Write Wy = RE, expand R*HyR, normal-order: with e(p) := |l%|p|> — (3/47)%/3| get

<1]}N7 HN‘DN) — Ell\-/“: + <£‘7 Z e(p)a:ap—i— Z e(h)a;k-,ah + Q §>
PGB;:: heBr
.
=: Hin opgt'Llairotllz :‘arl,a

Slater determinant corresponds to £ = |Q2): in particular (Hyin + Q) |0) = 0.



Collective Particle—Hole Pairs

Key observation: if we introduce collective pair creation operators

p

b = Op_hra-ar

k ZC p—h.kdpdh h “hole” inside the Fermi ball
pEBE

heBE

“particle” outside the Fermi ball

then

1 A
Q= N Z \/(k) <2bzbk + bltbik + b_kbk) + Qnon—paired .
kez3

This is convenient because the b and by have approximately bosonic commutators:

[br, b/]=0 , [b1, bi] = Ok, in +Efks) -
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Key observation: if we introduce collective pair creation operators

p

b = Op_hra-ar

k ZC p—h.kdpdh h “hole” inside the Fermi ball
pEBE

heBE

“particle” outside the Fermi ball

then

1 A
Q= N Z \/(k) (2bzbk + bltbik + b_kbk) + Qnon—paired .
kez3

This is convenient because the b and by have approximately bosonic commutators:

[br, b/]=0 , [b1, bi] = Ok, inf + EfkLY .

But how to express Hyi, through pair operators?



Linearizing the Kinetic Energy Locally in Patches

Localize to M = M(N) patches near the Fermi surface,

1
* L * %
ak T Z 5P—h7kapah
.k peBiNB,
heBENBy

with ng  such that ||b7, ,|0)[| = 1.

[Benfatto—Gallavotti '90]
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Linearizing the Kinetic Energy Locally in Patches

Localize to M = M(N) patches near the Fermi surface,

1
ok = o Z 5p—h,k32377
.k peBiNB,
heBENBy
with ng  such that ||b7, ,|0)[| = 1.

Linearize kinetic energy around patch center w:
Hyinb?, £10) =~ 2h|k - &q| by, «|0)

Approximate as if b7 , was a harmonic oscillator mode:

[Benfatto—Gallavotti '90]

M
Hin = > > 2hua(k)?bY kbak,  ua(k)® := |k-al
[Haldane '94] kens o1 ’

(c.f., [Lieb—Mattis '65] for the 1D Luttinger model). 9



Quadratic Effective Hamiltonian

Recall

1 -
Q= N Z \/(k) (2b/tbk + beik + bfkbk)‘f‘Qnon-paired
kez3
Decompose

bi = na kb, + lower order .
(0%

10



Quadratic Effective Hamiltonian

Recall

A

1 ~
Q= N Z \/(k) (2b/tbk + beik + bfkbk)‘f‘Qnon-paired —

kez3
Decompose

bi = na kb, + lower order .

Normalization:

nik = #p-h pairs in patch B, with momentum k

v
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Quadratic Effective Hamiltonian

Recall
Z V(k
keZ3
Decompose

A

2bkbk + bkb* x+b_ kbk)+Qnon paired —

by = Z Ne,k by, i + lower order .

Normalization:

nik = #p-h pairs in patch B, with momentum k /

Effective Bosonic Hamiltonian

HefF: hz Zua(k)z

kez3L o

V(k
b by kt+———=
a,k ,k+ M

v

a’ﬂ

5 (ua(k)ug(k)b;;kbﬁ,k+ua(k)w(k)bz,kb;,_ﬁh.c)

10



Diagonalization of the Bosonic Hamiltonian

We can write Heff — 1 Z {heff(k) _ %tr(D(k) + W(k))]
kez3

1 D+W W b |
=2 ((6")7 b7) - . b=|ba|,
2 W D+w)\b |

_ (diag() o ol 0\ o 0 |u
D‘( 0 diag(u§)>’ W‘V( 0 |u><u|>’ W‘V(u><u| 0 >

The model is solved (spectrum computed) if we can find linear combinations of b— and
b*—operators, called b, with the same CCR such that
M

o 1
heff:Ze,y(bj;b»y‘i’z) 9 E»YER.
y=1 11

where



Bogoliubov Transformation

These are Bogoliubov transformations (or complexified symplectic transformations).

We achieve diagonalization up to a one—particle unitary [B '19] (which is sufficient):

e 7 1 ~
heff = Z 5b§b5+§trE, E:\/diag(ug)—i-V]uMu\ZO.
7,6=1

In the limit of large number of patches, M — oo, the correlation energy becomes

ERPA =h 3" |K U log (1+ V/(k) (1~ Narctan A7) ) dx — LllV(k)} .

kez3

Predicted by partial resumm. of pert. theory [Macke '50, Gell-Mann—Brueckner '57].

12



Rigorous Result: Correlation Energy



Leading Order of the Correlation Energy

Theorem: [B-Nam—Porta—-Schlein-Seiringer '19, '20]

Let V(k) be non-negative and compactly supported with sufficiently small || V/| s
Then as number of particles N — oo we have

Eny = ENF + ERPA  O(BMT3) (A= N"173).

13



Leading Order of the Correlation Energy

Theorem: [B-Nam—Porta—-Schlein-Seiringer '19, '20]

Let V(k) be non-negative and compactly supported with sufficiently small || V/| s
Then as number of particles N — oo we have

Eny = ENF + ERPA  O(BMT3) (A= N"173).

\

The upper bound follows from a computation with a trial state (variational principle).
Proof of the lower bound is the rest of the talk.

Remarks: [Hainzl-Porta—Rexze '19] obtained a rigorous lower bound to second order
in \7

Ey > EMF hg(l —log2) 3" |k|V (k)2 + O(3) .
keZ3 13



Proof of the Lower Bound



Explicit Diagonalization of the Hamiltonian

The previously introduced Bogoliubov transformation has an explicit formula:

_eXp<Z Z K 7[3b ka k—hC), K(k):|0g|5]_|

kez3 o,f=1

and thus, in the exactly bosonic picture,

1
THhTT* = Z 4.0 by b5 + S tr E
v,6=1

vV
N|

Makes sense even if the b*—operators are actually pairs of fermionic operators.

To control: gapless excitations, non—bosonizable terms, errors in approximate CCR.

14



Strategy (1/2)

1. A-priori estimate: [|b(k)¥|| < CNY/2||Hy/2p|| [Hainzl-Porta—Rexze '19]. Thus
Hiin < C(Hiin + Q) < A

2. Bound on the number operator: |{lattice points on the sphere}| < C.N'/3+¢ thus
2/

o=
N::Za;‘a,-g Z 1+ Z afa; <

i€z’ e(i)<N—? e(i)>N—?

3 CN1/3+6 + N2/3Hkin _ O(Nl/3) )

3. IMS localization in Fock space to control also powers of N.

4. Removing gapless pair excitations (momentum approximately parallel to Fermi
surface) and corridors from Hamiltonian using Hi,—, N —bounds.

5. Approximate CCR:

[ba,k, b5 ] = b8 (k1 + Ealk, 1)) Ea(k, 1) bounded by N .

6. ThoxT" =3, cosh(K)abyk + >, sinh(K)a, b 4 + €ak (almost bosonic BT).
' 15



Strategy (2/2)

7.

10.

11.

Major improvement |: boson bounds avoiding the uncontrollable energy gap

| ba k|| < ||NL;1/2¢|| where Ny := Ze(i)>lN—1/3—6 ajaj, 0 to be optimized.
7

Major improvement |l: strong control on the Bogoliubov kernel K(k)

. Ug ug(k
[K(K)aygl < 5 min { 2244, 22041 . (1)

Major improvement Ill: strong bound on linearization of kinetic energy permits
M > N?% instead of M > N1/3.
Major improvement IV: non—bosonizable terms

partial transformation & completing the square = Qnon—pair > —|| \A/Hgoo Hyn -

Hhin + Q = Hiin — HE, + HE, + Q. We have T (Hhin — HE, ) T* = (Hun — HE,),

M | - 1 ,
HE +Q= 2%5:1 E, s b5 bs + 5 tr E > HE, — ||V goo Hiin + 5 tr E using (1). y



Kinetic bound [Hainzl-Porta—Rexze '19]

Proof of the kinetic bound.

16Kl < D p-nillanapll = Y p- N OET0) \/ ) + e(h)||anap||

pPEBE pPEBE
heBg hEBF
1 2 1/2 = 1/2
< Z Ok o) 1 e(h) > 5ph,k(e(P)Jre(h))!ahapsz]
L peBF d L peBE
hEBF heBg
2 1/2 = 1/2
1 2
< | S drngrram| | 55 e (ceantl? + ellans?)]
L pEBF d L pEBE
hEBF hEBF

IA

1/2
CNM2 || Hl 2]

The sum is singular near the Fermi surface — estimate by CN/2 requires use of number
theoretic results about counting of lattice points! 0 17



Removing Gapless Excitations

18



Removing Gapless Excitations

Introduce a cut—off: instead of
b/t - Za:lM na’kb;,k Consider

* *
bk =) Z na7kba’k N

o€,
where
7p={ac{1,2,...,M}:
k-@a>/v—5}.

Difference can be controlled by

_ 2
(...) < CNY2=072| /2y
19



Boson bounds avoiding the uncontrollable energy gap

Proof of || by k|| < HN51/2¢||. Recall N5 := 3" afaj, ¢ as in the cut—off.

e(i)>%N*1/3*5
1

Hboz,kz/)H < 7;{ Z 5p—h,kHahaP1zZ)H
nOé( )pEBE
heBg
1 .
< — 5 2 Sp-nkmin{[lapp ], [lany]l} -
o )pesg
heBg

Due to a € I:’ we have k-, > N9 thus
e(p) + e(h) = B2p? — B2h? = K2 (p2 —(p— k)2) =12 (2p k- k2)
1
~ 122w, - k = 2(2) Y3k - g > E/v*/H :

Thus e(p) > %N_l/"’_‘s or e(h) > %N_1/3_5. “Lower bound on excitation energy”. [
20



Linearization of the Kinetic Energy

Instead of linearizing Hy;,, only linearize its commutator, re-

‘4?+¢Q swlece aea
N8 taining info about “away from the energy gap” as last bound.

1

[Hiin, b5 ] = > (e(p) +e(h)) dp-nkapap

oK) pEBENB,
he BN By

= 20(2) 3k - G b}, o + error

error ~ (e(p) +e(p—k)— 271(%)1/3/( : cba) = 1? (2k (p—wa) — k2)
NL/3
VM

Error bounded by 71/\/'51/2/\//_1/2 < h. Major improvement: M > N is sufficient. O
21

< W2C|p — wa| < K2Cdiam(B,) < I? = hO(Mfl/z) _



Non—Bosonizable Terms

Non—bosonizable terms. Positive non—pair term + coupling to pairs

Quon-pai = 1 3 V(K) (D*(K)D(K) + D*(K)B(K) + B(K)D*(K))
kez3

Of course

1 1 1
D*(k)b(k) > —ED*(k)D(k) - Eb*(k)b(k) > —ED*(k)D(k) - §Hki" :
To use this bound we need to first transform the b—operators with the Bogoliubov
transformation, and afterward use a similar bound. Only possible because

. - ug(k
|K(k)a,p] < % min {Zﬂgzg, uigk;} = ZKa,gna < Cng .

1

allows us to remove the cosh(K) and sinh(K) from the transformed expression. O

22



QED



