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Many-Body Systems

General Hamiltonian of N identical spinless particles

H =
N∑

i=1
(−∆i + Vext(xi )) +

∑
1≤i<j≤N

V (xi − xj) with Vext,V : R3 → R

on the bosonic Hilbert space

L2symm(R3N) =
{
ψ ∈ L2(R3N) | ψ(xσ(1), xσ(2), . . .) = ψ(x1, x2, . . .) ∀σ ∈ SN

}
or on the fermionic Hilbert space

L2antisymm(R3N) =
{
ψ ∈ L2(R3N) | ψ(xσ(1), xσ(2), . . .) = sgn(σ)ψ(x1, x2, . . .) ∀σ ∈ SN

}
.

Niels Benedikter Correlation Energy of the Mean-Field Fermi Gas 2 / 18



Ground State Energy

What is the ground state energy

EN := inf
‖ψ‖=1

〈ψ,Hψ〉 ?

We always have

〈ψ,Hψ〉 = tr (−∆ + V ) γ(1) + 1
2

∫∫
V (x1 − x2)γ(2)(x1, x2; x1, x2) dx1dx2

in terms of the two- and one-particle reduced density matrices

γ(2) = N!
(N − 2)! tr3,4,...N |ψ〉〈ψ| , γ(1) = 1

N − 1 tr2 γ(2) .

So we simply minimize over γ(2)? Unfortunately not: the set of all two-particle rdm is hard to
characterize: N-representability problem.
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Bosonic Mean-Field Limit
The way out: restrict to specific physical regimes.
Simplest: high density & weak interaction, s. th. we expect approximate mean-field behaviour:

Hmf =
N∑

i=1
(−∆i + Vext(xi )) + 1

N
∑

1≤i<j≤N
V (xi − xj) , particle number N →∞ .

As N →∞, the set of two-particle rdm is characterized by Quantum de-Finetti theorem,
see e. g., [Størmer ’69, Hudson–Moody ’75, Christandl–König–Mitchison–Renner ’07]:
(N − k)!

N! γ(k) →
∫
|u⊗k〉〈u⊗k |dµ(u) , µ = probability measure on

{
u ∈ L2(R3) | ‖u‖ = 1

}
.

Implies convergence to Hartree functional [Lewin–Nam–Rougerie ’13]

Emf
N → N inf

u∈L2(R3)
‖u‖=1

[∫
u(x) (−∆x + Vext(x)) u(x)dx + 1

N

∫
|u(x)|2V (x − y)|u(y)|2 dxdy

]
.

Next smaller term due to quantum correlations? Bogoliubov correction [Grech–Seiringer ’13].
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Fermionic Mean-Field Limit
Fermions have high kinetic energy (Fermi energy), to be tamed down in mean-field limit

Hmf =
N∑

i=1

(
−~2∆i + Vext(xi )

)
+ 1

N
∑

1≤i<j≤N
V (xi − xj) , ~ = N−1/3 .

There is no Quantum de-Finetti for fermions.
The set of two-particle rdm is complicated, see e. g., [Klyachko ’06].

But by specialized methods [Graf–Solovej ’94] one can show that correlations are small,
implying convergence to the Hartree–Fock functional

Emf
N → inf

ω2 = ω on L2(R3)
trω=N

[
tr(−∆ + Vext)ω +

∫∫
ω(x , x)V (x − y)ω(y , y)−

∫∫
|ω(x , y)|2V (x − y)

]
︸ ︷︷ ︸

=: EHF(ω)

.

What is the next order term, due to quantum correlations?
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Correlation Energy in the Fermionic Jellium Model
The non-rigorous solution of this problem, by [Bohm–Pines ’53, Gell-Mann–Brueckner ’57,
Sawada et al. ’57], established theoretical condensed matter physics as a field.
They considered the jellium model: no scaling of constants, thermodynamic limit, Coulomb
interaction, and density ρ→∞.

Random Phase Approximation

E jellium(ρ) = CTFρ
5/3 − CDρ

4/3︸ ︷︷ ︸
Hartree-Fock energy

of non-interacting Fermi ball

+CBPρ log(ρ) + CGBρ+ o(ρ) as ρ→∞ .

Mean-field scaling is slightly different:
Emf = Ekin + Edirect + Eexchange︸ ︷︷ ︸

Hartree-Fock energy
of non-interacting Fermi ball

+EBP + EGB,1 + EGB,2

Ekin,Edirect ∼ N, Eexchange ∼ 1, EBP,EGB,1 ∼ N−1/3, EGB,2 ∼ N−2/3 .
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The Gell-Mann–Brueckner Formula

[Gell-Mann–Brueckner ’57] proposed that (here rewritten in the mean-field case)

EBP + EGB,1 = ~
∑

k∈Z3

|k|
[∫ ∞

0
log
(
1 + V̂ (k)

(
1− v arctan v−1

))
dv − 1

4 V̂ (k)
]
. (1)

All orders of perturbation theory in V̂

GB collect the dominant terms at all order of perturbation theory. For Coulomb interaction,
V̂ (k) = 1/|k|2, high orders are badly IR divergent, ∼ |k|−2n+1 for k → 0.
By summing the series first, as for V̂ (k) small, they get (1), which is regularized to log(ρ).

Much simpler, EGB,2 is just the second-order perturbation of exchange type.

[Sawada et al ’75]: “Think of a∗pa∗h as bosonic.” — But: (a∗pa∗h)2 = 0 �
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Momentum Representation in Fock Space

The mean-field Fermi gas in the box [0, 2π]3 with periodic boundary conditions

Hmf := ~2
∑

k∈Z3

|k|2a∗kak + 1
N

∑
q,s,k∈Z3

V̂ (k)a∗q+ka∗s−kasaq , ~ = N−1/3 .

Non-interacting system: Fermi ball

BF :=
{

k ∈ Z3 | |k| ≤ N1/3
( 3
4π

)1/3
}

Associated one-particle density matrix constructed from plane waves

ω0 = (2π)−3
∑

k∈BF

|eipx 〉〈eipx | .
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Our Result: Optimal Upper Bound

Theorem: [B-Nam-Porta-Schlein-Seiringer, arXiv:1809.01902]

Let V̂ (k) be non-negative, bounded, and compactly supported. Then

EN ≤ EHF(ω0) + EBP + EGB,1 +O(~N−1/27) .

Remarks:
Slightly earlier [Hainzl-Porta-Rexze ’18] obtained an upper and also lower bound, but only
to second order in V̂ .
We use a trial state which in principle also captures EGB,2, but in the mean-field scaling
this contribution is too small to be seen.
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Particle-Hole Transformation

Unitary map R on fermionic Fock space such that

RΩ = (N!)−1/2
∧

k∈BF

eikx , Ra∗kR∗ =
{

ak k ∈ BF
a∗k k ∈ Bc

F

Write ψ = Rξ. Calculate R∗HR to get

〈ψ,Hψ〉 = EHF(ω0) + 〈ξ,
(
~2
∑

p∈Bc
F

p2a∗pap − ~2
∑

h∈BF

h2a∗hah

︸ ︷︷ ︸
=: Hkin

+ Q
)
ξ〉+O(N−1)

where Q is quartic in fermionic operators.

We “only” need to pick ξ.
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Collective Particle-Hole Pairs
The dominant part Q of the interaction can be expressed through collective pair operators

b∗k :=
∑

p∈Bc
F

h∈BF

δp−h,ka∗pa∗h

as
Q = 1

N
∑

k∈Z3

V̂ (k)
(
2b∗kbk + b∗kb∗−k + b−kbk

)
.

This is convenient because

The b∗ and b have approximately bosonic commutators; summation over many modes
relaxes the Pauli principle

ground state of quadratic Hamiltonians explicitly given by Bogoliubov transformations.

But how to express Hkin through pair operators?
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Localization to Patches

Localize to M = M(N) patches near the Fermi surface,

b∗α,k := 1
nα,k

∑
h∈BF∩Bα

p∈BC
F ∩Bα

δp−h,ka∗pa∗h

where nα,k = #p-h pairs in α with momentum k.

Linearize kinetic energy around centers ωα:

Hkinb∗α,kΩ ' 2~ |k · ω̂α|︸ ︷︷ ︸
=: uα(k)

b∗α,kΩ .

suggests the quadratic effective Hamiltonian

Heff = ~
∑

k∈Z3

[∑
α

uα(k)2b∗α,kbα,k + V̂ (k)
M

∑
α,β

(
uα(k)uβ(k)b∗α,kbβ,k + uα(k)uβ(−k)b∗α,kb∗β,−k +h.c.

)]
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Heuristics: Bosonic Approximation

For this slide only: Assume b∗α,k , bα,k are exactly bosonic operators.

Then the ground state of Heff is given by a Bogoliubov transformation:

ξgs = T Ω, T = exp

∑
k∈Z3

∑
α,β

K (k)α,βb∗α,kb∗β,−k − h.c.

 (2)

K (k) is an almost explicit M ×M-matrix

and
〈ξgs,Heffξgs〉 → EBP + EGB,1 as M →∞ .

Use formula (2) to define a trial state in fermionic Fock space,
thus get a rigorous upper bound for the fermionic system.
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Convergence to Bosonic Approximation

Lemma: We have approximate CCR

[b∗α,k , b∗β,l ] = 0 = [bα,k , bβ,l ] and [bα,k , b∗β,l ] = δα,β
(
δk,l + Eα(k, l)

)
,

where for all ξ in fermionic Fock space the error is bounded by

‖Eα(k, l)ξ‖ ≤ 2
nα,knα,l

‖N ξ‖ (N = fermionic number operator) .

Lemma: If M(N)� N2/3 then typically nα,k →∞ as N →∞.

Remark: To be precise, b∗α,k = 0 for k · ω̂α < 0. We replace such b∗α,k by b∗α,−k , reducing the
number of pair creation operators by half.
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Proposition: With K (k) from the bosonic approximation, let in fermionic Fock space

Tλ := exp (λB) , B :=
∑

k∈Z3

∑
α,β

K (k)α,βb∗α,kb∗β,−k − h.c. .

Then Tλ acts as an approximate Bogoliubov transformation on b∗α,k and bα,k , i. e.,

T ∗λbα,kTλ =
M∑
β=1

cosh(λK (k))α,βbβ,k +
M∑
β=1

sinh(λK (k))α,βb∗β,−k + Eα,k

where the error is bounded by
[ M∑
α=1
‖Eα,kψ‖2

]1/2
≤ C

minα n2α,k
‖(N + 2)3/2Tλψ‖ for all ψ in fermionic Fock space .

Remark: To be precise, we need a cutoff excluding patches with |k · ω̂α| ≤ N−δ, otherwise the
minα n2α,k may vanish. The parameter δ can be optimized at the end.
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Lemma: (Self-Consistency of the Bosonic Approximation)

The particle number on our trial state ξtrial := Tλ=1Ω is bounded by

〈ξtrial, (N + 1)n ξtrial〉 ≤ Cn independent of N .

Proof: Show that for some Dn = Dn
(∑

k ‖K (k)‖HS
)
<∞ we have

d
dλ〈TλΩ, (N + 5)nTλΩ〉 ≤ Dn〈TλΩ, (N + 5)nTλΩ〉 .

Then by Grönwall’s lemma

〈TλΩ, (N + 5)nTλΩ〉 ≤ eλDn〈Tλ=0Ω, (N + 5)nTλ=0Ω〉 .

Set λ = 1 and Cn := eDn .
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Lemma: The kinetic energy can be linearized as Hkin = Hlinear + E, where

Hlinear = ~
M∑
α=1

 ∑
p∈BC

F ∩Bα

|p · ω̂α|a∗pap −
∑

h∈BF∩Bα

|h · ω̂α|a∗hah


and the error operator E is small compared to ~ = N−1/3 if M(N)� N1/3; namely

|〈ξ,Eξ〉| ≤ C
M 〈ξ,N ξ〉 for all ξ in fermionic Fock space .

Lemma: We have
[Hlinear, b∗α,k ] = 2~|k · ω̂α|b∗α,k ,

exactly as for the effective Hamiltonian and exactly bosonic b∗-operators.
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Proof of Main Theorem

Proof: We just have to calculate 〈ξtrial,Hξtrial〉.

Expand into commutators by applying once the Duhamel formula

〈ξtrial,Hξtrial〉 =
∫ 1

0
〈Ω,T ∗λ [H,B]TλΩ〉 dλ .

Now use the kinetic energy commutator.
The resulting expression for [H,B] is quadratic in b∗- and b-operators.

Calculate explicitly 〈Ω,T ∗λ (quadratic)TλΩ〉 using the approximate Bogoliubov
transformation property, then integrate over λ to find EBP + EGB,1.

Optimize over M(N) to see that all errors are smaller than ~N−1/27 times
〈ξtrialN ξtrial〉 ≤ const.
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