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General Hamiltonian of N identical spinless particles

N
H=S (-8 + Vea(0)+ 3 V(x—»x)  with Vor, V:R3 5 R
i=1 1<i<j<N

on the bosonic Hilbert space

L2 mm(RN) = {¢ € L2(RN) | (xo(1), Xo(2): - --) = ¥(x1,%2,...) Vo € SN}

or on the fermionic Hilbert space

Lgntisymm(R3N) = {¢ € Lz(R3N) I w(Xa(1)7XJ(2)7 .. ) = Sgn(O')’(ﬁ(Xl,XQ, . ) Vo € SN} .



Ground State Energy

What is the ground state energy
En := inf (¢, HY)?
M= L, Y

We always have

1
(h, HY) = tr (=A + V)1 4 5 // V(x1 — x2)v® (x1, x2; X1, x2) dx1dxo

in terms of the two- and one-particle reduced density matrices

N! 1
y?) = (N=2)! traa,..n|Y) (Y], y) = N_1 trpy?)

So we simply minimize over 7(2)? Unfortunately not: the set of all two-particle rdm is hard to
characterize: N-representability problem.

Niels Benedikter Correlation Energy of the Mean-Field Fermi Gas 3/18

Bosonic Mean-Field Limit

The way out: restrict to specific physical regimes.
Simplest: high density & weak interaction, s.th. we expect approximate mean-field behaviour:

N
1
H™f — E (—A; + Ve (x:)) + N E V(x; — xj), particle number N — oco.
i=1 1<i<j<N

As N — o0, the set of two-particle rdm is characterized by Quantum de-Finetti theorem,
see e. g., [Stgrmer '69, Hudson—-Moody '75, Christandl-K&nig—Mitchison—Renner '07]:

N — k)!
%y(k) o /\u®k><u®k\du(u), (. = probability measure on {u e 2R3 | ||u|| = 1}.

Implies convergence to Hartree functional [Lewin—Nam—Rougerie '13]

ERT — N inf
uel?(R3)
lull=1

J WO (s + Ve () wx)ex + [ 1OV (x = () dxy |

Next smaller term due to quantum correlations? Bogoliubov correction [Grech—Seiringer '13].
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Fermionic Mean-Field Limit

Fermions have high kinetic energy (Fermi energy), to be tamed down in mean-field limit

N
A =S (WA Veal)) + 3 X0 Vi), h= N

i=1 1<i<j<N

There is no Quantum de-Finetti for fermions.
The set of two-particle rdm is complicated, see e. g., [Klyachko '06].

But by specialized methods [Graf-Solovej '94] one can show that correlations are small,
implying convergence to the Hartree—Fock functional

S nf ey |[FCAT Vext)w+//W(X7X)V(X—y)W(y,y)—/ [w(x )PV (x—y)

trw=N ~

-~

= 8H|:(w)

What is the next order term, due to quantum correlations? J
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Correlation Energy in the Fermionic Jellium Model
The non-rigorous solution of this problem, by [Bohm—Pines '53, Gell-Mann—Brueckner '57,
Sawada et al. '57], established theoretical condensed matter physics as a field.

They considered the jellium model: no scaling of constants, thermodynamic limit, Coulomb
interaction, and density p — oc.

Random Phase Approximation

Eiellium () = \CTF’O5/3 — CDp4/?i +Crpplog(p) + Corp + o(p) as p — 00.

-~

Hartree-Fock energy
of non-interacting Fermi ball

Mean-field scaling is slightly different:
Emf — Fkin + Edirect + Eexchange/'i‘EBP + EGB,l + EGB,2

Hartree-Fock energy
of non-interacting Fermi ball

~1/3 —2/3
Eiin, Edirect ~ N, Eexchange ~ 1, Egp, Egg1 ~ N3, Eggo~ N72/3.
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The Gell-Mann—Brueckner Formula

[Gell-Mann—Brueckner '57] proposed that (here rewritten in the mean-field case)

00 R B 1 A
Egp + Ecp1 = hgég\k\ UO log (1 + V(k)(l — varctanv 1)) dv — ZV(k)] . (1)

A

All orders of perturbation theory in V J

GB collect the dominant terms at all order of perturbation theory. For Coulomb interaction,
V(k) = 1/|k|?, high orders are badly IR divergent, ~ |k|=2"+1 for k — 0.
By summing the series first, as for V/(k) small, they get (1), which is regularized to log(p).

Much simpler, Egg 2 is just the second-order perturbation of exchange type.

[Sawada et al '75]: “Think of a}aj; as bosonic.” — But: (a%aj)* =0 % l
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Momentum Representation in Fock Space

The mean-field Fermi gas in the box [O,27r]3 with periodic boundary conditions
1 n
H™ =12 > |k afax + N S V(K)ahai_kasaq,  h= N3
kez3 q,s,keZ3

Non-interacting system: Fermi ball

1/3
Br := {k e Z3 | |k| < NY/3 (i) }
47

Associated one-particle density matrix constructed from plane waves

wo = (2m)73 3 [P ) (e

keBr
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Our Result: Optimal Upper Bound

Theorem: [B-Nam-Porta-Schlein-Seiringer, arXiv:1809.01902]
Let \7(k) be non-negative, bounded, and compactly supported. Then

En < Enr(wo) + Esp + Ece1 + O(ﬁ/\/_l/27) .

"

Remarks:

m Slightly earlier [Hainzl-Porta-Rexze '18] obtained an upper and also lower bound, but only
to second order in V.

m We use a trial state which in principle also captures Egg 2, but in the mean-field scaling
this contribution is too small to be seen.
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Particle-Hole Transformation

Unitary map R on fermionic Fock space such that

ax k € BF

RQ = (NI)"V2 A\ e, Ra;R* :{ ke B

keBF

Write ¢ = R{. Calculate R*HR to get

(1, H) = Enr(wo) + (€, <h2 > pPajap—h* > hajan + Q)§> +O(NT)

peBe heBr

. s

~
= Hkin

where @ is quartic in fermionic operators.

We “only” need to pick €.
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The dominant part Q of the interaction can be expressed through collective pair operators

* * _k
bk = Z 5p_h’kapah

pEBE
heBr
as 1
Q=5 D V(K) (2bgbi + b + b_iby) .
keZ3

This is convenient because

m The b* and b have approximately bosonic commutators; summation over many modes
relaxes the Pauli principle

m ground state of quadratic Hamiltonians explicitly given by Bogoliubov transformations.

But how to express Hl;, through pair operators?
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Localize to M = M(N) patches near the Fermi surface,

1
* R * ok
ak = Z Op—h,kapah
.k heBrnBa
pEBENB,

where n, , = #p-h pairs in o with momentum k.
Linearize kinetic energy around centers w,:
Hkinb; kQ >~ 2h|k : d]a| b:; kQ'
) \ , )

=: ua(k)

Hegr = R Z [Z“a(k)zba,kba,k*'#z (ua(k)uﬂ(k)ba,kbﬂ,k ms ua(k)u5(—k)ba,kb5’_k—|—h.c.)]
kez3 L @ a,B

12/18



Heuristics: Bosonic Approximation

For this slide only: Assume b;’k, bo k are exactly bosonic operators. J

Then the ground state of Hesr is given by a Bogoliubov transformation:

bes = TQ, T =exp (Z > K(K)a,sb% kb i — h.c.) (2)

keZ3 a,B

K (k) is an almost explicit M x M-matrix

and
<€gSaHefF€gs> — Egp + EGB,l as M — .

Use formula (2) to define a trial state in fermionic Fock space,
thus get a rigorous upper bound for the fermionic system.
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Convergence to Bosonic Approximation

Lemma: We have approximate CCR

(65 ki b5,) = 0 = [baks bgs]  and  [bak, b5] = 0, (0ks + Ealk, 1),

where for all £ in fermionic Fock space the error is bounded by

2

|1Ealk, NE]| < INVE]] (N = fermionic number operator) .

a, kol

Lemma: If M(N) < N?/3 then typically Nok — 00 as N — oo,

Remark: To be precise, b’ , = 0 for k- &, < 0. We replace such b, , by b} _,, reducing the
number of pair creation operators by half.
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Proposition: With K(k) from the bosonic approximation, let in fermionic Fock space
Ty == exp (\B), B:=> Y K(k)asblbs i —hc..
keZ3 o,p

Then T) acts as an approximate Bogoliubov transformation on b’ , and b, i.e.,

M M
TXbaxTrh =) cosh(AK(k))a,sbsk + > _ sinh(AK(k))a,5b5 _k + €ak
B=1 B=1

where the error is bounded by

1/2
/ C

M
[Z |’€a,k¢H2
a=1

ming ng,

< —— ||V + 2)3/2T\y|| for all 4 in fermionic Fock space.

Remark: To be precise, we need a cutoff excluding patches with |k - 0| < N9 otherwise the

ming ni . may vanish. The parameter ¢ can be optimized at the end.
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Lemma: (Self-Consistency of the Bosonic Approximation)
The particle number on our trial state &ial := Ta=182 is bounded by
(&wrial, (N 4+ 1)" &ial) < G, independent of N.
Proof: Show that for some D, = Dn(Zk ||K(k)HH5) < 0o we have
d
a(T,\Q, (N + 5)”T)\Q> < Dn<T>\Q, (N + 5)nT)\Q> .
Then by Gronwall's lemma
(ToQ, (N +5)"TaQ) < e*P(Th—0Q, (N +5)" ThoQ) -
Set A=1 and C, := ePn. OJ
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Lemma: The kinetic energy can be linearized as Hyjn, = Hiinear + €, Where

M
Hiinear = I Z Z |P : d\)a’a;ap - Z |h ) (:‘\Joz‘a;krah

a=1 | peBENB, heBFNBaq

and the error operator & is small compared to k= N~=1/3 if M(N) > N/3; namely

|(€, €8)| < %(5,/\/5) for all £ in fermionic Fock space.

Lemma: We have
[Hlineara bz,k] = 2h‘k ’ dja|b>ok¢,k )

exactly as for the effective Hamiltonian and exactly bosonic b*-operators.

Niels Benedikter Correlation Energy of the Mean-Field Fermi Gas 17 /18

Proof of Main Theorem

Proof: We just have to calculate (&ial, H trial)-

m Expand into commutators by applying once the Duhamel formula
1
(Seias M) = [ (9, THIH, BITAQ) 42,
m Now use the kinetic energy commutator.

The resulting expression for [H, B] is quadratic in b*- and b-operators.

m Calculate explicitly (Q, Ty (quadratic) T\Q2) using the approximate Bogoliubov
transformation property, then integrate over A to find Egp + Egp 1.

m Optimize over M(N) to see that all errors are smaller than ZN~1/27 times

<§tria|N€trial> < const.
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