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General Hamiltonian of N identical spinless particles on the 3-dimensional torus

N
Hy = Z (—A)) + Z V(xi — x;) with V:R3 - R
i=1 1<i<j<N
on the bosonic Hilbert space

L2 (T3Y) = {0 € LT | (0(0), %o(2), ) = $1,50,...) Vo € Sw}

or on the fermionic Hilbert space

Lgntisymm(T3N) = {¢ € L2(T3N) | ¢(Xa(l)aX0(2)7 . ) = Sgn(O')w(Xl,Xz, . ) Vo € SN} .



Ground State Energy

What is the ground state energy

En := ||1Lﬂi1<¢, Hyv) = inf spec(Hn) ?

Defining the two- and one-particle reduced density matrices (r.d. m.)

N! 1
7(2) = m tr3,4,...NW> <¢’ ’ fy(l) = N_1 tro 7(2) )

we always have

1
(1, Hy) = tr (—Afy(l)> + 5 // V(x1 — X2)’Y(2)(X1,X2; X1, x2) dx1dxo .

So we simply minimize over v(2? Unfortunately not: the set of all two-particle reduced density
matrices is hard to characterize: N-representability problem.
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Bosons J




Bosonic Mean-Field Limit

The way out: restrict to specific physical regimes.

Simplest: high density & weak interaction, s.th. we expect approximate mean-field behaviour:

N
1
Hf = Z (—A;) + N Z V(x; — xj), particle number N — oco.
i=1 1<i<j<N

As N — o0, the set of two-particle r.d. m. is characterized by Quantum de-Finetti theorem:

N — k)!
%y(k) — /\u@’k)(u@k]d,u(u) factorized, no quantum correlations.

Implies convergence to Hartree functional [Lewin—-Nam—Rougerie '13, ...]
ERf— inf l/\Vu )|?dx + /[ — W)|u(y)?dxdy | =: N EHartree,
u€L2 (R3)
lull=1
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Correlation Corrections to the Hartree Functional

Next order correction: due to quantum correlations!
E;\wlwf N NEHartree + O(l)
Bogoliubov theory [Grech—Seiringer '13, Pizzo '15]:

1
ERpf — /VEHar”ee—5 > lp +V(p \/p +2p2V(p )] + O(N~1/?)
pEZ3

Remark: In the thermodynamic limit we expect the Lee-Huang-Yang formula

28
E(p) — 4mpa [1 + ﬁ( )1/2 + .. ] a = scattering length of V', p = density

m [Yau-Yin '09]: upper bound

m [Giuliani—Seiringer '09, Brietzke—Solovej '19]: lower bound for long-range potentials
m [Brietzke—Fournais—Solovej '19]: non-optimal lower bound

m [Boccato—Brennecke—Cenatiempo—Schlein '18]: lower bound for Gross-Pitaevskii limit
m lower bound for general case: open.
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Fermions J

Fermionic Mean-Field Regime

Fermions have high kinetic energy (Fermi energy), to be tamed down in mean-field scaling

N
Hf = ; (—n?a0) + /b S Vii-x), h=N13,

1<i<j<N

No Quantum de-Finetti theorem — set of two-particle r.d. m. is complicated [Klyachko '06].

Special correlation estimate implies convergence to Hartree—Fock functional [Graf-Solovej '94]:

ERf inf tr Aw+// w(x, x)V(x—y)w(y,y) /\wxy\z Xy)}— HF
wz—w on L%(T?3)
trw=N
[Wigner '34]: What is the next order term, due to quantum correlations? J
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The Gell-Mann—Brueckner Formula

Originally jellium model considered: no scaling of constants, thermodynamic limit, Coulomb

interaction, and density p — oc.

The non-rigorous solution [Bohm—Pines '53, Gell-Mann—Brueckner '57, Sawada et al. '57] also

explained screening and collective oscillations (the plasmon).

Random Phase Approximation

Ejellium(p) _ FTFP5/3 _ CDP4/?1+§BPP log(p) + CGBQ + o(p) as p — 0.

Hartree-Fock energy correlation energy
of Fermi ball

Mean-field scaling with regular interaction is slightly different:

Emf — EHF EBP EGB,l EGB,2 )
HF 4 EBP 4 +
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How did Gell-Mann and Brueckner calculate the correlation energy?

The random phase approximation of Gell-Mann and Brueckner:
Notice: For Coulomb interaction, high orders are badly IR divergent,
V(K)™ ~ |k|72" for k — 0.

Collect the most divergent term from each order of perturbation theory, finding

2 3
x—%—l—%—l—... with x ~ V/(k)
Ignore divergence and resum it
= log(1 + x).
= h Z | k| /OO lo (1 + \A/(k)<1 — varctan v_l)) dv — 1\A/(k) — EER S EGEL
0 & 4 ’

keZ3
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Remark: E®B2 is much simpler, just second-order perturbation of exchange type.
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Our Result:
Optimal Upper Bound

Upper Bound on Correlation Energy

Theorem: [B-Nam-Porta-Schlein-Seiringer, arXiv:1809.01902]
Let \7(k) be non-negative, bounded, and compactly supported. Then

Evf < ENF 4+ EBP 4 ECBL L O(nN—1/77)

Remarks:
n [HaAinzI—Porta—Rexze '18] obtained a perturbative upper and lower bound to second order
in V.
m We use a trial state which in principle also captures E®®2, but in the mean-field scaling
this contribution is too small to be seen.
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Preparation: Extracting the
Hartree—Fock Energy

Extracting the Hartree—Fock Energy
Hamiltonian in momentum representation, written with fermionic canonical operators:

1 .
HR' =1 > |k[Paja + N ST V(K)ah,ai_gasaq,  h= N3
keZ3 q,s,keZ3

Introduce the simplest fermionic state (Slater determinant) of N plane waves in the Fermi ball

Uni= A fio  Bri={keZ| K < NV (3/4m)' )
keBe

Then, following [Gontier—Hainzl-Lewin 18],

(Wn, HYfWy) = ENF + O(e ™).

Goal: find Wy s.th. (Uy, HY W) = ENF + EBP 4 ECBL 4 o(N71/3) .
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Adding Correlations:
The Method of Collective
Bosonization

Particle-Hole Transformation

Define the unitary map R on fermionic Fock space by

ak k € BF
RQ = \I}N = /\ fk? RaiR* = { %
KA ai ke Bg

Write Wy = R¢. Calculate R*HPR to get

(U, HRfW ) = ENF + (¢, <h2 > pPajap—h* > hajan + Q)g) + O(NY)
pEBE heBE

>

:i<74Mn
where Q is quartic in fermionic operators. (Notice: QQ = 0.)

Our task: construct a non-perturbatively correlated trial state &. ]
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The dominant part Q of the interaction can be expressed through collective pair operators

* oL
bk = Z (5p_h,ka;§a;‘,
pEBE
heBr

as

1 ~
Q=7 > V(k) (2bibe + bgb”j + b_yby) -
kez3

This is convenient because

m The b* and b have approximately bosonic commutators:
a* odd ~ a*a* even, and summation over many modes relaxes the Pauli principle!

m ground state of quadratic Hamiltonians is explicitly given by a Bogoliubov transformation.

But: How to express H*" through pair operators? J
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Localize to M = M(N) patches near the Fermi surface,

. 1
* o Xk
Fermi ball B¢ ook = Z 5p_h7kapah
Kk heBrNBa
pEBENB.

where n, i = \/#p-h pairs in a with momentum k.
Linearize kinetic energy around centers w,:
H<"p*  Q ~ 2k |k- Qo] b, Q.
) \ , )
=: Uy (k)?

By comparison to the harmonic oscillator:

HA™ o N "N " 206 (k)b jcbak -
keZ3 o
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Quadratic Effective Hamiltonian

ngé’k = #p-h pairs in patch B, with momentum k

/ Decompose

A by = Z Na,k by, x + lower order
(0%

/ 1 ¥ * * ok
, Q= > V(k) (2bfbi + bib* . + b_iby) .

HE = 13 | S talbboct 0 S <ua(k)u5(k)b:;,kbﬂ,k t ua(k)uﬁ(—k)b;,kb;;,_wh.c.>

keZ3
V (k)

kez3 L « o,B
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Heuristics: Bosonic Approximation

For this slide only: Assume b, ,, b,k are exactly bosonic operators.

14 /21

Then the ground state of H* is given by a Bogoliubov transformation:

and

bes=TQ, T =exp (Z Z K(k)a,5b% kb i — h.c.)

kez3 a,p

K (k) is an almost explicit M x M-matrix

(Egor HSegs) — EBP + ECBL as M — 0.

To get a rigorous upper bound for the fermionic system:
Use (1) to define a trial state in fermionic Fock space.
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Rigorous Analysis J

Convergence to Bosonic Approximation

Lemma: We have approximately bosonic commutators:
(65 ks b5,) = 0 = [baks bgs]  and  [ba ks b5] = G (0ks + Ealk, 1))

where for all £ in fermionic Fock space the deviation operator £,(k, /) is bounded by

2

1Ea(k, NE]| < INVE| (N = fermionic number operator).

a, kol
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Approximate Bogoliubov Transformations

Proposition: With K(k) from the bosonic approximation, let in fermionic Fock space

Ty :=exp (\B), B:=> Y K(k)apsbl b _«—h.c
keZ3 a,B

Then T acts as an approximate Bogoliubov transformation on b}, , and b, k, i.e.,

M M
TxbaxTh =) cosh(AK(k))a,sbs i + Y sinh(AK(k))a,8b5 _k + Cak
B=1 =1

where the error is bounded by

1/2
< #H(NHL 2)3/2 Txy|| for all ¢ in fermionic Fock space.

- 2
ming ng,

[Z €0 kll®
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Bound on \/

Lemma: The particle number on our trial state

€tria| = T/\zlQ

is bounded by
(Etrial, NV + 1)3 Ewial) < C  independent of N.

Conclusion: We introduce a cutoff excluding patches with u,(k)? < N79;
thus the error terms are small,

<€trla|)(N+22) gtr|al> < 73 ¢ < C%,
ming Nz, N e (k)2 N2/3N-

errors ~

~» bosonic approximation is self-consistent for M(N) < N2/379,
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Dealing with the Kinetic Energy

Lemma: The kinetic energy can be linearized as HK" = H'i"ea" L @ where

M
H"”ear:hz Z P @alapap — Z |h - Dqlaran
a=1

pEBENBy heBrNB,

and the error operator & is small compared to k= N—1/3 if M(N) > N/3; namely

|(€,&8)| < (5‘ NE) for all £ in fermionic Fock space.

Lemma: We have
[H"®" b7 ] = 2h|k - Gu b 4

in this (and only this) sense we have H'"®" ~ 3~ 33~ 2hua(k)2b2,kba’k.
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Proof of Main Theorem: Variational Principle
Proof: We just have to calculate (R&ial, HﬁfRﬁtriaQ ~ (Q, Ty, (H””ear + Q> Th=19).

m The interaction part @ is quadratic in b* and b —
just calculate the action of the approximate Bogoliubov transformation.

m The linearized kinetic energy H'"®®" is not quadratic in b* and b —
expand into commutators by applying once the Duhamel formula

. 1 .
(Euriats M € i) = /0 (Q, Ti[H™, B]TAQ) dA

/ Q T)\ Z Z K [Il_llinear7 b;,kb;,—k — hC] T)\Q> d)\

keZ3 a,B

/ Q7Y ZK Jous2h (1 - Gal + [k - @51 ) Bl b5, TAQ) + c.c.
keZ3 a

and Tyb: Ty is given by the approximate Bogoliubov transformation.
’ O
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QED

m Corresponding lower bound — notice that we are dealing with a gapless system!

m Coulomb interaction and the plasmon:
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Thank you!



