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Quantum Many-Body Systems

General Hamiltonian of N identical spinless particles on the 3-dimensional torus

HN :=
N∑

i=1
(−∆i ) +

∑
1≤i<j≤N

V (xi − xj) with V : R3 → R

on the bosonic Hilbert space

L2symm(T3N) :=
{
ψ ∈ L2(T3N) | ψ(xσ(1), xσ(2), . . .) = ψ(x1, x2, . . .) ∀σ ∈ SN

}
or on the fermionic Hilbert space

L2antisymm(T3N) :=
{
ψ ∈ L2(T3N) | ψ(xσ(1), xσ(2), . . .) = sgn(σ)ψ(x1, x2, . . .) ∀σ ∈ SN

}
.
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Ground State Energy

What is the ground state energy

EN := inf
‖ψ‖=1

〈ψ,HNψ〉 = inf spec(HN) ?

Defining the two- and one-particle reduced density matrices (r. d.m.)

γ(2) := N!
(N − 2)! tr3,4,...N |ψ〉〈ψ| , γ(1) := 1

N − 1 tr2 γ(2) ,

we always have

〈ψ,HNψ〉 = tr
(
−∆γ(1)

)
+ 1

2

∫∫
V (x1 − x2)γ(2)(x1, x2; x1, x2) dx1dx2 .

So we simply minimize over γ(2)? Unfortunately not: the set of all two-particle reduced density
matrices is hard to characterize: N-representability problem.
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Bosons



Bosonic Mean-Field Limit
The way out: restrict to specific physical regimes.

Simplest: high density & weak interaction, s. th. we expect approximate mean-field behaviour:

Hmf
N =

N∑
i=1

(−∆i ) + 1
N

∑
1≤i<j≤N

V (xi − xj) , particle number N →∞ .

As N →∞, the set of two-particle r. d.m. is characterized by Quantum de-Finetti theorem:

(N − k)!
N! γ(k) −→

∫
|u⊗k〉〈u⊗k |dµ(u) factorized, no quantum correlations.

Implies convergence to Hartree functional [Lewin–Nam–Rougerie ’13, . . . ]

Emf
N → N inf

u∈L2(R3)
‖u‖=1

[ ∫
|∇u(x)|2dx +

∫
|u(x)|2V (x − y)|u(y)|2 dxdy

]
=: N EHartree .
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Correlation Corrections to the Hartree Functional
Next order correction: due to quantum correlations!

Emf
N → N EHartree +O(1) .

Bogoliubov theory [Grech–Seiringer ’13, Pizzo ’15]:

Emf
N → N EHartree−1

2
∑

p∈Z3

[
p2 + V̂ (p)−

√
p4 + 2p2V̂ (p)

]
+O(N−1/2) .

Remark: In the thermodynamic limit we expect the Lee-Huang-Yang formula

E (ρ)→ 4πρa
[
1 + 128

15
√
π

(ρa3)1/2 + . . .

]
a = scattering length of V , ρ = density

[Yau–Yin ’09]: upper bound
[Giuliani–Seiringer ’09, Brietzke–Solovej ’19]: lower bound for long-range potentials
[Brietzke–Fournais–Solovej ’19]: non-optimal lower bound
[Boccato–Brennecke–Cenatiempo–Schlein ’18]: lower bound for Gross-Pitaevskii limit
lower bound for general case: open.
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Fermions

Fermionic Mean-Field Regime

Fermions have high kinetic energy (Fermi energy), to be tamed down in mean-field scaling

Hmf
N =

N∑
i=1

(
−~2∆i

)
+ 1

N
∑

1≤i<j≤N
V (xi − xj) , ~ = N−1/3 .

No Quantum de-Finetti theorem — set of two-particle r. d.m. is complicated [Klyachko ’06].

Special correlation estimate implies convergence to Hartree–Fock functional [Graf–Solovej ’94]:

Emf
N → inf

ω2 =ω on L2(T3)
trω=N

[
tr(−∆ω) +

∫∫
ω(x , x)V (x − y)ω(y , y)−

∫∫
|ω(x , y)|2V (x − y)

]
=: EHF

N .

[Wigner ’34]: What is the next order term, due to quantum correlations?
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The Gell-Mann–Brueckner Formula
Originally jellium model considered: no scaling of constants, thermodynamic limit, Coulomb
interaction, and density ρ→∞.

The non-rigorous solution [Bohm–Pines ’53, Gell-Mann–Brueckner ’57, Sawada et al. ’57] also
explained screening and collective oscillations (the plasmon).

Random Phase Approximation

E jellium(ρ) = CTFρ
5/3 − CDρ

4/3︸ ︷︷ ︸
Hartree-Fock energy

of Fermi ball

+CBPρ log(ρ) + CGBρ︸ ︷︷ ︸
correlation energy

+ o(ρ) as ρ→∞ .

Mean-field scaling with regular interaction is slightly different:

Emf
N = EHF

N + EBP + EGB,1︸ ︷︷ ︸
∼N−1/3

+ EGB,2︸ ︷︷ ︸
∼N−2/3

.
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How did Gell-Mann and Brueckner calculate the correlation energy?
The random phase approximation of Gell-Mann and Brueckner:

1 Notice: For Coulomb interaction, high orders are badly IR divergent,

V̂ (k)n ∼ |k|−2n for k → 0 .

2 Collect the most divergent term from each order of perturbation theory, finding

x − x2

2 + x3

3 + . . . with x ∼ V̂ (k)

Ignore divergence and resum it
= log(1 + x) .

⇒ ~
∑

k∈Z3

|k|
[∫ ∞

0
log
(
1 + V̂ (k)

(
1− v arctan v−1

))
dv − 1

4 V̂ (k)
]

= EBP + EGB,1 .

Remark: EGB,2 is much simpler, just second-order perturbation of exchange type.
Niels Benedikter Correlation Energy by Bosonization 8 / 21



Our Result:
Optimal Upper Bound

Upper Bound on Correlation Energy

Theorem: [B-Nam-Porta-Schlein-Seiringer, arXiv:1809.01902]

Let V̂ (k) be non-negative, bounded, and compactly supported. Then

Emf
N ≤ EHF

N + EBP + EGB,1 +O(~N−1/27) .

Remarks:
[Hainzl-Porta-Rexze ’18] obtained a perturbative upper and lower bound to second order
in V̂ .
We use a trial state which in principle also captures EGB,2, but in the mean-field scaling
this contribution is too small to be seen.
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Preparation: Extracting the
Hartree–Fock Energy

Extracting the Hartree–Fock Energy
Hamiltonian in momentum representation, written with fermionic canonical operators:

Hmf
N := ~2

∑
k∈Z3

|k|2a∗kak + 1
N

∑
q,s,k∈Z3

V̂ (k)a∗q+ka∗s−kasaq , ~ = N−1/3

Introduce the simplest fermionic state (Slater determinant) of N plane waves in the Fermi ball

ΨN :=
∧

k∈BF

fk , BF :=
{

k ∈ Z3 | |k| ≤ N1/3 (3/4π)1/3
}
.

Then, following [Gontier–Hainzl–Lewin ’18],

〈ΨN ,Hmf
N ΨN〉 = EHF

N +O(e−N1/6) .

Goal: find Ψ̃N s. th. 〈Ψ̃N ,Hmf
N Ψ̃N〉 = EHF

N + EBP + EGB,1 + o(N−1/3) .
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Adding Correlations:
The Method of Collective

Bosonization

Particle-Hole Transformation

Define the unitary map R on fermionic Fock space by

RΩ := ΨN =
∧

k∈BF

fk , Ra∗kR∗ :=
{

ak k ∈ BF
a∗k k ∈ Bc

F

Write Ψ̃N = Rξ. Calculate R∗Hmf
N R to get

〈Ψ̃N ,Hmf
N Ψ̃N〉 = EHF

N + 〈ξ,
(
~2
∑

p∈Bc
F

p2a∗pap − ~2
∑

h∈BF

h2a∗hah

︸ ︷︷ ︸
=: Hkin

+ Q
)
ξ〉+O(N−1)

where Q is quartic in fermionic operators. (Notice: QΩ = 0.)

Our task: construct a non-perturbatively correlated trial state ξ.
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Collective Particle-Hole Pairs
The dominant part Q of the interaction can be expressed through collective pair operators

b∗k :=
∑

p∈Bc
F

h∈BF

δp−h,ka∗pa∗h

as
Q = 1

N
∑

k∈Z3

V̂ (k)
(
2b∗kbk + b∗kb∗−k + b−kbk

)
.

This is convenient because

The b∗ and b have approximately bosonic commutators:
a∗ odd ; a∗a∗ even, and summation over many modes relaxes the Pauli principle!

ground state of quadratic Hamiltonians is explicitly given by a Bogoliubov transformation.

But: How to express Hkin through pair operators?
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Localization to Patches

Fermi ball BF

Localize to M = M(N) patches near the Fermi surface,

b∗α,k := 1
nα,k

∑
h∈BF∩Bα
p∈BC

F ∩Bα

δp−h,ka∗pa∗h

where nα,k =
√

#p-h pairs in α with momentum k.

Linearize kinetic energy around centers ωα:

Hkinb∗α,kΩ ' 2~ |k · ω̂α|︸ ︷︷ ︸
=: uα(k)2

b∗α,kΩ .

By comparison to the harmonic oscillator:

Hkin '
∑

k∈Z3

∑
α

2~uα(k)2b∗α,kbα,k .
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Quadratic Effective Hamiltonian

k

n2α,k = #p-h pairs in patch Bα with momentum k

' 4πN2/3

M |k · ω̂α| = 4πN2/3

M uα(k)2

Decompose

b∗k =
∑
α

nα,kb∗α,k + lower order

in
Q = 1

N
∑

k∈Z3

V̂ (k)
(
2b∗kbk + b∗kb∗−k + b−kbk

)
.

Heff = ~
∑

k∈Z3

[∑
α

uα(k)2b∗α,kbα,k + V̂ (k)
M

∑
α,β

(
uα(k)uβ(k)b∗α,kbβ,k + uα(k)uβ(−k)b∗α,kb∗β,−k +h.c.

)]
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Heuristics: Bosonic Approximation

For this slide only: Assume b∗α,k , bα,k are exactly bosonic operators.

Then the ground state of Heff is given by a Bogoliubov transformation:

ξgs = T Ω, T = exp

∑
k∈Z3

∑
α,β

K (k)α,βb∗α,kb∗β,−k − h.c.

 (1)

K (k) is an almost explicit M ×M-matrix

and
〈ξgs,Heffξgs〉 → EBP + EGB,1 as M →∞ .

To get a rigorous upper bound for the fermionic system:
Use (1) to define a trial state in fermionic Fock space.
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Rigorous Analysis

Convergence to Bosonic Approximation

Lemma: We have approximately bosonic commutators:

[b∗α,k , b∗β,l ] = 0 = [bα,k , bβ,l ] and [bα,k , b∗β,l ] = δα,β
(
δk,l + Eα(k, l)

)
,

where for all ξ in fermionic Fock space the deviation operator Eα(k, l) is bounded by

‖Eα(k, l)ξ‖ ≤ 2
nα,knα,l

‖N ξ‖ (N = fermionic number operator) .
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Approximate Bogoliubov Transformations

Proposition: With K (k) from the bosonic approximation, let in fermionic Fock space

Tλ := exp (λB) , B :=
∑

k∈Z3

∑
α,β

K (k)α,βb∗α,kb∗β,−k − h.c.

Then Tλ acts as an approximate Bogoliubov transformation on b∗α,k and bα,k , i. e.,

T ∗λbα,kTλ =
M∑
β=1

cosh(λK (k))α,βbβ,k +
M∑
β=1

sinh(λK (k))α,βb∗β,−k + Eα,k

where the error is bounded by[∑
α

‖Eα,kψ‖2
]1/2

≤ C
minα n2α,k

‖(N + 2)3/2Tλψ‖ for all ψ in fermionic Fock space .
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Bound on N

Lemma: The particle number on our trial state

ξtrial := Tλ=1Ω

is bounded by
〈ξtrial, (N + 1)3 ξtrial〉 ≤ C independent of N .

Conclusion: We introduce a cutoff excluding patches with uα(k)2 ≤ N−δ;
thus the error terms are small,

errors ∼ 〈ξtrial, (N + 2)3ξtrial〉
minα n2α,k

≤ C
N2/3

M uα(k)2
≤ C M

N2/3N−δ
,

; bosonic approximation is self-consistent for M(N)� N2/3−δ.
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Dealing with the Kinetic Energy

Lemma: The kinetic energy can be linearized as Hkin = H linear + E, where

H linear = ~
M∑
α=1

[ ∑
p∈Bc

F∩Bα
|p · ω̂α|a∗pap −

∑
h∈BF∩Bα

|h · ω̂α|a∗hah

]

and the error operator E is small compared to ~ = N−1/3 if M(N)� N1/3; namely

|〈ξ,Eξ〉| ≤ C
M 〈ξ,N ξ〉 for all ξ in fermionic Fock space .

Lemma: We have
[H linear, b∗α,k ] = 2~|k · ω̂α|b∗α,k ;

in this (and only this) sense we have H linear '
∑

k∈Z3
∑
α 2~uα(k)2b∗α,kbα,k .
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Proof of Main Theorem: Variational Principle
Proof: We just have to calculate 〈Rξtrial,Hmf

N Rξtrial〉 ' 〈Ω,T ∗λ=1

(
H linear + Q

)
Tλ=1Ω〉.

The interaction part Q is quadratic in b∗ and b —
just calculate the action of the approximate Bogoliubov transformation.
The linearized kinetic energy H linear is not quadratic in b∗ and b —
expand into commutators by applying once the Duhamel formula

〈ξtrial,H linearξtrial〉 =
∫ 1

0
〈Ω,T ∗λ [H linear,B]TλΩ〉 dλ

=
∫ 1

0
〈Ω,T ∗λ

∑
k∈Z3

∑
α,β

K (k)α,β[H linear, b∗α,kb∗β,−k − h.c.]TλΩ〉 dλ

=
∫ 1

0
〈Ω,T ∗λ

∑
k∈Z3

∑
α,β

K (k)α,β2~
(
|k · ω̂α|+ |k · ω̂β|

)
b∗α,kb∗β,−kTλΩ〉+ c. c.

and T ∗λb∗α,kTλ is given by the approximate Bogoliubov transformation.
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QED

Work in Progress

Corresponding lower bound – notice that we are dealing with a gapless system!

Coulomb interaction and the plasmon:
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Wavevector k of particle–hole pair

Thank you!
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