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Schroédinger equation: 0y = %Hwt in a Hilbert space H.

Project evolution on a submanifold M C H: '

Consider 1y € M and “infinitisemal time step”:

LHy,

P(v¢) = orthogonal projection onto the tangent space T, M




The Dirac-Frenkel Principle

The Dirac-Frenkel Principle: The optimal approximation to

1
Oripr = 7H¢t
in M is given by
1
Detpe = P(ue) Hbe,

with P(%)¢) the orthog. projection of H to the tangent space T, M.

This is optimal w.r.t. the scalar product of H.
Usually H is a space of wave-functions, e.g., 1 € H = L2(RN).

But in many-body theory the wave function is not a good starting point
for effective equations!
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Reduced Densities are Appropriate for Many-Body Systems

m One-particle reduced density matrix:

W = Ntry, i) (e] € &1(L2(RY))

m Recall typical results (e. g., B-Porta-Schlein 2014):

Theorem: Let v; solve the SE (in m.f. & semiclassical scaling).
Let v; € &1(L%(RY)) solve the Hartree-Fock equation.

Then for all t € R

H’Ygl) —Ytlle, < C(t) independent of N.

Yau, Rodnianski, Frohlich, Erdds, Knowles, Spohn, Pickl, Bardos, Petrat, Gottlieb,

Is HF the optimal effective evolution for reduced density matrices? J
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Overview

The Dirac-Frenkel Principle for Reduced Densities
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Our Simplest Example: Fermions without Pairing

Goal: Formulate a Dirac-Frenkel principle for reduced densities—
to ensure optimality of the effective equations in e. g., &> = G,(RY).

m Reduced density of many-body system:
WeH ={ye6: v =7}

m Submanifold of reduced densities of pure quasifree states (no pairing):
M={yeH :v*=~} C H

m Every v € M corresponds to a (unique up to a phase) ., € L2(RN):
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The Dirac-Frenkel Principle for Reduced Densities

An “infinitesimal time step” optimally looks like this:

Consider a quasifree initial state given by 79 € M
Take the many-body evolution 9; = e_"HtwfyO and calculate

1
0y = Ntry [SH. o) (0el] € H

Evaluate the derivative at t = O: &Wél) = Ntro N HH, |00 (¥ 1]

(1)

Project 0;yy "’ to the tangent space by P(v) : H — T, M

A Dirac-Frenkel Principle for Reduced Densities:

1
OtV = P(”Yt)Ntr2,...N [THa |¢%><¢%H
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How is this compatible with “quasifree reduction”?

We have three different equations:
Many body: 8t7§1) = Ntry N [%Ha Wt><¢t|] Yy = e_"Ht@bWO
Dirac-Frenkel: 0:y: = P(ve)Ntra  n HH, %) (P, |]
Quasifree reduction: 9yye = Ntro, n [LH, |1hy,) (104,]]

Comments:

...is not a well-posed Cauchy problem: knowledge of at#) does not
determine evolution of ;.

...is geometrically optimal & evolves in M.

.. .is known to produce the Hartree-Fock equations;

...does it stay in M7 Is it optimal?

We prove that Dirac-Frenkel implies Quasifree Reduction. )
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Tentative Proof

Oeve = PEINtra_ [ H, [t (1| 1)

Does it stay in M at all? There is a (simple?) PDE-argument:

1
(1) = O = [ThHF('Vt)a’Yt]a hue(7e) = —A + V x py, — X(72),
1
= 0:(77) = [7hHF(’Yt)7%%]-

If 45 = ~o, by uniqueness also v2 = 7;, i.e., 7+ € M.

This is optimal only because it now agrees with Dirac-Frenkel!
Unlike drye = 2Ntra, y [3H, [thy,) (1], or Opye = 0.

Anyway: We are going to give a more general argument, independent of
PDE theory, regularity questions and form of H.
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Dirac-Frenkel = Quasifree Reduction

Lemma: The tangent space in a point v € M is given by
TM={AcH :7yAy=0=(1—-v)A(1 —7)}.
The orthogonal projection from H onto T,M is given by

P(Y) : A= 7A(L =) + (1 = 7)Ay.

Proof. Let ~y; a curve in M, then 9:(v2) = ¢ ve. = Y470 + Y076 = Vb-
Multiply from left and right by g or (1 — 4o):

= 7077 = 0 = (1 —0)7(1 — )

Conversely, given such A, we take the curve ~; = etlA0l~ e~ tlA%],
Obviously ) = A. ]
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Dirac-Frenkel = Quasifree Reduction

Quasifree reduction written with test functions g1, g>» € L?(RY):

1
(g1, at%g2>L2(Rd) = (Y, [a7(82)a(81); 7 HlYy,) 7,

in comparison to Dirac-Frenkel:

(81, 0t7t82) 12(rd) = (Ve ([a*((l — 7t)82)a(7:81) 1H]

+ [ (eg2)al(L — 70)80). ]y

So to derive quasifree reduction from Dirac-Frenkel it is sufficient to show

(1, [a" (veg2)a(7e81), %H]%Ja =0

(s [37((1 = 10)2)a((1 — 7)), 5 Hlo )7, = 0.

We treat the 1st case explicitly:
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Dirac-Frenkel = Quasifree Reduction

Pick the unitary implementation R, of the Bogoliubov transform
a*(f) = a"((1L—7e)f) + a(ef).

This is a particle-hole transform: the transformed vacuum is RJ Q = 1.,.
(o 8" (reg2)alren).  Hlo,)
= (R, [ (eg2)al ). - HIR:, Q)
= (Q [a(rg2)a" (rega). + Ry, HR;JO)

* 1 *
= (2, [(82, Vt81) 12(re) — 3" (V£81) (V1 82), ~hRy. HRZ,12)
eC
= (4, ( — " (veg1)a(reg2) - Ry HRy, + — Ry HRS, 2 (%gl)a(%gz)> Q2)
=0 ]
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Overview

Application: The Bogoliubov-de-Gennes Equations
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Fermionic Systems with Pairing

m Systems with pairing are described in Fock space: ¢ € Fj.

m Generalized creation/annihilation operators:
A(F) = a(f) + a*(h), for F=(f,h) e L*(RY) @ L*(RY).
m Generalized reduced density I : L2 @ L% — [? @ L? defined by
(F1,TF2) 12612 = (b, A (FR2)A(F1)Y) 7,

r— ( y Qo > 7 Y(x,y) = <¢aa;ax¢> (2)

—a 1-% a(X,)/) = <¢7 axayw>

m For [?2 =T, there is a corresponding unique quasifree 1) € F.
m Problem: tr[* =trl =o00. So [ & &y = G(L? @ L?).
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Quasifree States Beyond Slater Determinants

m Split off the generalized reduced density of the vacuum

_ (0 0 vooa) =
(0 (0 n) et

Introduce the affine space with Hilbert-Schmidt geometry
A=Tpe+ A, A={Te6&, : T"=T}.

m Generalized reduced density of many-body evolution with block
structure (2) lives in the affine subspace

0 J

A ={TeA:. T+ JrgJ =1}, ‘7_<J 0

):L2@L2—>L2@L2.

m Generalized reduced densities of quasifree states form submanifold
M={TeA_:T?=T} c A. c A
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Result: Dirac-Frenkel = Quasifree Reduction

Having identified the spaces, we generalize the no-pairing case:

Lemma: The projection P(I") : Tr. A — Ty M satisfies

P(T) 1.4 A=TA(1 —T)+4 (1A,

Using some more refined theory of Bogoliubov transformations:

Theorem: The Dirac-Frenkel principle implies quasifree reduction

(FuL 8 eFo) oz = (. [A(F)ACFL), ~H] ) 7.

Remark: Bosonic Bogoliubov states (condensate & quasifree part) can be

treated by means of the mapping I — —I'S, where § = (é 01), and

using symplectic analogues of the above constructions.
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