Nichtrelativistische Quantenelektrodynamik Langzeitverhalten angeregter Zustände

Niels Benedikter

Institut für Analysis, Dynamik und Modellierung

7. Februar 2011

Überblick

- Grundlagen der Quantenelektrodynamik
 - Grundlagen der Quantentheorie
 - Fockraum
 - Die nichtrelativistische QED
- Das Langzeitverhalten der nichtrelativistischen QED
 - Eigenvektoren = stationäre Zustände
 - Spektrum der nichtrelativistischen QED
 - Harmonisch gebundenes Atom
 - Asymptotische Vollständigkeit

Overview

- Grundlagen der Quantenelektrodynamik
 - Grundlagen der Quantentheorie
 - Fockraum
 - Die nichtrelativistische QED
- Das Langzeitverhalten der nichtrelativistischen QED
 - Eigenvektoren = stationäre Zustände
 - Spektrum der nichtrelativistischen QED
 - Harmonisch gebundenes Atom
 - Asymptotische Vollständigkeit

Grundlagen der Quantentheorie

Wir benötigen

- einen Hilbertraum \mathcal{H} : die Zustände
- einen selbstadjungierten dicht-definierten linearen Operator $H:D(H)\subset\mathcal{H}\to\mathcal{H}.$

Grundlagen der Quantentheorie

Wir benötigen

- einen Hilbertraum \mathcal{H} : die Zustände
- einen selbstadjungierten dicht-definierten linearen Operator $H:D(H)\subset\mathcal{H}\to\mathcal{H}.$

H erzeugt die Zeitentwicklung e^{-iHt} .

Grundlagen der Quantentheorie

Wir benötigen

- einen Hilbertraum \mathcal{H} : die Zustände
- einen selbstadjungierten dicht-definierten linearen Operator $H:D(H)\subset\mathcal{H}\to\mathcal{H}.$

H erzeugt die Zeitentwicklung e^{-iHt} .

Sei $\psi_0 \in \mathcal{H}$, dann ist $\psi(t) = e^{-iHt}\psi_0$ die eindeutige Lösung der zeitabhängigen Schrödingergleichung

$$i\frac{d}{dt}\psi(t) = H\psi(t)$$
 mit AB $\psi(0) = \psi_0$.

Fockraum

- Hilbertraum eines Punktteilchens in 3 Dimensionen: $L^2(\mathbb{R}^3)$
- Hilbertraum für n Punktteilchen: $L^2(\mathbb{R}^{3n})$
- Photonen sind Bosonen, d. h. wir schränken uns auf bzgl.
 Permutation total symmetrische Zustände ein:

für alle Permut.
$$\sigma$$
 sei $f(\mathbf{k}_1, \dots \mathbf{k}_n) = f(\mathbf{k}_{\sigma(1)}, \dots \mathbf{k}_{\sigma(n)}),$

Hilbertraum: $L_s^2(\mathbb{R}^{3n})$.

Hilbertraum für variable Teilchenzahl:

Fockraum
$$\mathcal{F} = \bigoplus_{n=0}^{\infty} L_s^2(\mathbb{R}^{3n}).$$

(Wir unterdrücken überall die Helizität um die Notation kurz zu halten.)

Fockraum: Erzeuger und Vernichter

- Zustand in \mathcal{F} : eine Folge $\psi = (\psi_n)_{n \in \mathbb{N}}$ mit $\psi_n \in L^2_s(\mathbb{R}^{3n})$.
- Erzeuger erzeugt Teilchen im Zustand $f \in L^2(\mathbb{R}^3)$:

$$[a^*(f)\psi]_n(\boldsymbol{x}_1,\ldots\boldsymbol{x}_n)=\frac{1}{\sqrt{n}}\sum_{k=1}^n f(\boldsymbol{x}_k)\psi_{n-1}(\boldsymbol{x}_1,\ldots\widehat{\boldsymbol{x}_k}\ldots\boldsymbol{x}_n)$$

Vernichter vernichtet ein Teilchen:

$$[a(f)\psi]_n(\mathbf{x}_1,\ldots\mathbf{x}_n)=\sqrt{n+1}\int \overline{f(\mathbf{x})}\psi_{n+1}(\mathbf{x},\mathbf{x}_1,\ldots\mathbf{x}_n)\mathrm{d}\mathbf{x}$$

Kanonische Vertauschungsrelationen (CCR)

$$a(f)a^*(g) - a^*(g)a(f) = \langle f, g \rangle_{L^2} \mathbb{1}$$

 $a(f)a(g) - a(g)a(f) = 0 = a^*(f)a^*(g) - a^*(g)a^*(f)$

Die nichtrelativistische QED (in Dipolapprox.)

Einfachster Fall: Genau ein Elektron und das em. Feld

$$\mathcal{H}_{\mathsf{el}} = L^2(\mathbb{R}^3), \quad \mathcal{H} = \mathcal{H}_{\mathsf{el}} \otimes \mathcal{F}_{\mathsf{s}}.$$

Hamilton-Operator ohne em. Feld:

$$H_{\rm el} = \boldsymbol{p}^2 + V = -\Delta + V$$
 auf $\mathcal{H}_{\rm el}$

Die nichtrelativistische QED (in Dipolapprox.)

Einfachster Fall: Genau ein Elektron und das em. Feld

$$\mathcal{H}_{\mathsf{el}} = L^2(\mathbb{R}^3), \quad \mathcal{H} = \mathcal{H}_{\mathsf{el}} \otimes \mathcal{F}_{\mathsf{s}}.$$

• Hamilton-Operator ohne em. Feld: $H_{\rm el} = {\bf p}^2 + V = -\Delta + V$ auf $\mathcal{H}_{\rm el}$

Hamilton-Operator mit Feld, ohne Wechselwirkung:

$$extstyle H_0 = (-\Delta + V) \otimes \mathbb{1} + \mathbb{1} \otimes H_{ extstyle f} ext{ auf } \mathcal{H} = \mathcal{H}_{ extstyle el} \otimes \mathcal{F}_{ extstyle s}$$

Die nichtrelativistische QED (in Dipolapprox.)

Einfachster Fall: Genau ein Elektron und das em. Feld

$$\mathcal{H}_{\mathsf{el}} = \mathcal{L}^2(\mathbb{R}^3), \quad \mathcal{H} = \mathcal{H}_{\mathsf{el}} \otimes \mathcal{F}_{\mathsf{s}}.$$

- Hamilton-Operator ohne em. Feld: $H_{\text{el}} = \mathbf{p}^2 + V = -\Delta + V$ auf \mathcal{H}_{el}
- Hamilton-Operator mit Feld, ohne Wechselwirkung: $H_0 = (-\Delta + V) \otimes \mathbb{1} + \mathbb{1} \otimes H_f$ auf $\mathcal{H} = \mathcal{H}_{el} \otimes \mathcal{F}_s$
- Hamilton-Operator mit Feld, WW in Dipolapproximation: Sei $E_i(\mathbf{0}) = a(G_i) + a^*(G_i)$, G_i beschreibe bei $\mathbf{x} = \mathbf{0}$ lokalisiertes Photon (zu L^2 ausgeschmiert). $H = (-\Delta + V) \otimes \mathbb{1} + \mathbb{1} \otimes H_i + e \sum_{i=1}^3 x_i \otimes E_i(\mathbf{0})$ auf \mathcal{H} .

Die nichtrel. QED ist wohldefiniert.

Theorem (Hasler-Herbst)

Sei
$$H = -\Delta \otimes \mathbb{1} + V \otimes \mathbb{1} + \mathbb{1} \otimes H_f + e \sum_{i=1}^3 x_i \otimes E_i(\mathbf{0}).$$

Sei V bzgl. $-\Delta$ infinitesimal beschränkt.

Dann ist H mit Definitionsbereich $D = H^2(\mathbb{R}^3) \otimes D(H_f)$ selbstadjungiert.

Beweis: Ohne Potential *V* mittels quadratischer Formen. Dann Potential mittels Satz von Kato-Rellich hinzufügen.

Eigenvektoren = stationäre Zustände Spektrum der nichtrelativistischen QEI Harmonisch gebundenes Atom Asymptotische Vollständigkeit

Overview

- Grundlagen der Quantenelektrodynamik
 - Grundlagen der Quantentheorie
 - Fockraum
 - Die nichtrelativistische QED
- Das Langzeitverhalten der nichtrelativistischen QED
 - Eigenvektoren = stationäre Zustände
 - Spektrum der nichtrelativistischen QED
 - Harmonisch gebundenes Atom
 - Asymptotische Vollständigkeit

Eigenvektoren = stationäre Zustände

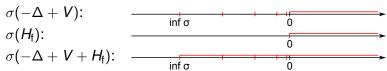
- Sei $H\psi = E\psi$. Dann ist $e^{-iHt}\psi = e^{-iEt}\psi$.
- Physikalische Größen:
 - Erwartungswerte $\langle e^{-iHt}\psi, Ae^{-iHt}\psi\rangle$ eines Operators *A*.
 - ightharpoonup für Eigenvektoren hebt sich Phase e^{-iEt} weg
 - → triviale Zeitentwicklung, Zustand ist stationär.

Eigenvektoren = stationäre Zustände

- Sei $H\psi = E\psi$. Dann ist $e^{-iHt}\psi = e^{-iEt}\psi$.
- Physikalische Größen:
 - Erwartungswerte $\langle e^{-iHt}\psi, Ae^{-iHt}\psi\rangle$ eines Operators *A*.
 - ightharpoonup für Eigenvektoren hebt sich Phase e^{-iEt} weg
 - viriviale Zeitentwicklung, Zustand ist stationär.
- Erfahrungsgemäß sind angeregte Zustände nicht stationär sondern zerfallen!
 - \sim Ziel: Beweise, dass keine Eigenvektoren außer dem Grundzustand ψ_q existieren.

Spektrum der nichtrel. QED

Ungekoppeltes System



Spektrum der nichtrel. QED

Ungekoppeltes System

Gekoppeltes System:

$$\sigma(H)$$
: absolutely cont.

Spektrum der nichtrel. QED

Ungekoppeltes System

$$\sigma(-\Delta + V): \qquad \qquad \inf \sigma \qquad 0 \qquad \qquad \\ \sigma(H_{\rm f}): \qquad \qquad 0 \qquad \qquad \\ \sigma(-\Delta + V + H_{\rm f}): \qquad \inf \sigma \qquad 0 \qquad \qquad$$

Gekoppeltes System:

$$\sigma(H)$$
: absolutely cont.

Beweis z. B. via Mourre-Theorie: (z. B. Fröhlich-Griesemer-Sigal) Suche Operator A mit $HA-AH \geq c > 0$. Dann kann H keinen Eigenvektor haben, da sonst

$$0 = E \langle \psi, A\psi \rangle - \langle \psi, A\psi \rangle E = \langle \psi, (HA - AH)\psi \rangle \ge c \langle \psi, \psi \rangle > 0.$$

Eigenvektoren = stationäre Zustände Spektrum der nichtrelativistischen QEI Harmonisch gebundenes Atom Asymptotische Vollständigkeit

Langzeitverhalten: Übergang in Grundzustand

Langzeitverhalten: Übergang in Grundzustand

Anregungsoperator für das "Atom": $\alpha^{\dagger} \sim x_1 - ip_1$.

Theorem (B.)

Sei $V(\mathbf{x}) = c\mathbf{x}^2$. Sei e klein. Dann

$$\| e^{-iHt} \, \alpha^\dagger \psi_g - \underbrace{ \textbf{\textit{a}}^*(e^{-i\omega t}\phi_+)}_{\textit{freies Photon}} \underbrace{ \textbf{\textit{e}}^{-iEt}\psi_g}_{\textit{Grundzustand}} \, \| \leq \textit{\textbf{C}} e^{-\gamma t} + \mathcal{O}(\textbf{\textit{e}}^2).$$

Weiterhin:

- Photonzustand $\phi_+(\mathbf{k}, \lambda)$ ist explizit berechenbar, hat Peak bei Energie der Anregung $+\mathcal{O}(e^2)$.
- Nicht-triviale obere und untere Schranken für γ bestimmt.

Höhere Anregungen $(\alpha^{\dagger})^n \psi_q$ analog behandelbar.

Eigenvektoren = stationäre Zustände Spektrum der nichtrelativistischen QEI Harmonisch gebundenes Atom Asymptotische Vollständigkeit

Beweisskizze

Idee: Der Hamilton-Operator ist quadratisch → es genügt die entsprechenden klass. Bew.gl. zu lösen.

Eigenvektoren = stationäre Zustände Spektrum der nichtrelativistischen QEI Harmonisch gebundenes Atom Asymptotische Vollständigkeit

Beweisskizze

ldee: Der Hamilton-Operator ist quadratisch → es genügt die entsprechenden klass. Bew.gl. zu lösen.

- Löse gekoppeltes System aus Maxwell-Gln. und Punktladung.
 - Via Fouriertransf. im Raum, dann Laplacetransf. in Zeit.

Beweisskizze

ldee: Der Hamilton-Operator ist quadratisch → es genügt die entsprechenden klass. Bew.gl. zu lösen.

- Löse gekoppeltes System aus Maxwell-Gln. und Punktladung.
 Via Fouriertransf. im Raum, dann Laplacetransf. in Zeit.
- Übertrage klass. Lsg. in Lösung der Schrödingergl. Dazu Definitionsbereiche einiger Op. mit Nelsons Analytische-Vektoren-Thm. diskutieren

Beweisskizze

Idee: Der Hamilton-Operator ist quadratisch → es genügt die entsprechenden klass. Bew.gl. zu lösen.

- Löse gekoppeltes System aus Maxwell-Gln. und Punktladung.
 Via Fouriertransf. im Raum, dann Laplacetransf. in Zeit.
- Übertrage klass. Lsg. in Lösung der Schrödingergl. Dazu Definitionsbereiche einiger Op. mit Nelsons Analytische-Vektoren-Thm. diskutieren
- \odot Lösung \sim exponentiell relaxierende Terme + langsamer relaxierende Terme + "freies Photon und GZ"

Beweisskizze

ldee: Der Hamilton-Operator ist quadratisch → es genügt die entsprechenden klass. Bew.gl. zu lösen.

- Löse gekoppeltes System aus Maxwell-Gln. und Punktladung.
 Via Fouriertransf. im Raum, dann Laplacetransf. in Zeit.
- Übertrage klass. Lsg. in Lösung der Schrödingergl. Dazu Definitionsbereiche einiger Op. mit Nelsons Analytische-Vektoren-Thm. diskutieren
- \odot Lösung \sim exponentiell relaxierende Terme + langsamer relaxierende Terme + "freies Photon und GZ"
- Weierstraßscher Vorbereitungssatz
 → die langsam relaxierenden Terme sind O(e²).

Asymptotische Vollständigkeit der Rayleigh-Streuung

Vermutung (ACR)

Sei Σ die Ionisierungsschwelle.

Alle Zustände aus dem spektralen Unterraum $\chi(H < \Sigma)$ zerfallen in den Grundzustand und freie Photonen,

d. h. lassen sich als Linearkombination von Zuständen ψ schreiben mit der Eigenschaft:

$$\|e^{-iHt}\psi - a^*(e^{-i\omega t}h_1)\cdots a^*(e^{-i\omega t}h_n)e^{-iEt}\psi_g\| \to 0 \quad (t\to\infty)$$

für geeignete Photonzustände $h_1, \ldots h_n \in L^2(\mathbb{R}^3)$.

Offenes Infrarot-Problem, da Anzahl der Photonen schwer kontrollierbar.

Zusammenfassung

- Die nichtrel. QED ist eine rigorose Quantentheorie von Licht und Materie bei niedrigen Energien.
- Ziel: Langzeitverhalten der nichtrelativistischen QED verstehen
- Eigenvektoren des Hamilton-Operators (stationäre Zustände) können ausgeschlossen werden.
- Übergang in den Grundzustand ist bisher nur in vereinfachten Modellen bewiesen.