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Motivation and homotopy theory Spin in different space dimensions

Spin in different space dimensions

In 3+1 dimensions: 3 axes of rotation 3 operators of angular
momentum with commutator relations

[Si , Sj ] = iεijkSk .

 Spin is integer or half-integer, eigenvalues:

S2 |s, m〉 = s(s + 1) |s, m〉 , with s ∈ 1
2

N.

In 2+1 dimensions: Only one axis of rotation exists.
 only one operator of angular momentum, no commutators!

Result
In 2+1 dimensions, spin is not restricted to integer and half-integer
values.
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Motivation and homotopy theory Repetition: Homotopy groups

Homotopy

Connection with quantum statistics?
Idea: "coarse" classification of mappings allows us to discuss
interchange of particles etc.

Definition (Continuous deformation/homotopy)
Let X be a topological space.
A homotopy between two continuous mappings f1, f2 : Sn → X is a
continuous mapping h : Sn × [0, 1] → X with

h(x , 0) = f1(x), h(x , 1) = f2(x) ∀x ∈ Sn.

Define f1 ∼ f2 (equivalence) if a homotopy between them exists.
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Motivation and homotopy theory Repetition: Homotopy groups

Homotopy groups

Fix a base point x0 ∈ X , s0 ∈ Sn and require

f (s0) = x0, h(s0, t) = x0 ∀t ∈ [0, 1].

Notation: C(Sn, X ) := {f : Sn → X | f continuous; x0, s0 fixed} .

Definition (Homotopy groups)
The nth homotopy group is the set of equivalence classes

πn(X ) := C(Sn, X )/ ∼ .

Remark: πn(X ) does not depend on x0 and s0 (if X is path-connected),
but they need to be fixed!
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Motivation and homotopy theory Repetition: Homotopy groups

The multiplication law in πn(X )

n-cube In := [0, 1]× · · · × [0, 1], surface (boundary) ∂In.

Identify mappings Sn → X , s0 7→ x0
with mappings In → X , ∂In 7→ x0.

À

For two such mappings α, β:

α · β(x1, . . . xn) :=

{
α(2x1, x2, . . . xn) 0 ≤ x1 ≤ 1/2
β(2x1 − 1, x2, . . . xn) 1/2 < x1 ≤ 1

Example 1:
mappings a, b : S2 → S2:

Example 2: π1(X ),
i.e. S1 → X Á

a

b

ab

continuous
deformation

multiplication

I²

I²

I²
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Motivation and homotopy theory Repetition: Homotopy groups

Homotopy groups of spheres

Example: Take X = Sn. πk (X ) = πk (Sn) ∼= ?

en.wikipedia.org/wiki/Homotopy_groups_of_spheres:

π1 π2 π3 π4 π5 π6 π7 π8 π9
S0 0 0 0 0 0 0 0 0 0
S1 Z 0 0 0 0 0 0 0 0
S2 0 Z Z Z2 Z2 Z12 Z2 Z2 Z3
S3 0 0 Z Z2 Z2 Z12 Z2 Z2 Z3
S4 0 0 0 Z Z2 Z2 Z× Z12 Z2

2 Z2
2

S5 0 0 0 0 Z Z2 Z2 Z24 Z2
S6 0 0 0 0 0 Z Z2 Z2 Z24
S7 0 0 0 0 0 0 Z Z2 Z2
S8 0 0 0 0 0 0 0 Z Z2

where Zm = Z/mZ = ({0, 1, . . . m − 1}, + mod m).
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Hopf term in the non-linear sigma model Repetition: the O(3) non-linear sigma model

The non-linear sigma model

Describes a continuous spin field in the 2d plane:

n : R2 → S2 ⊂ R3, x 7→ n(x), a unit vector.

Energy given by classical Hamiltonian:

E(n) =

∫ 3∑
a=1

| ∇na︸︷︷︸
spatial derivatives

|2 d2x ≥ 0

No prefered orientation of n: degenerate ground state,
e.g. n = (1, 0, 0), which has ∂ina = 0, E(n) = 0.
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Hopf term in the non-linear sigma model Repetition: the O(3) non-linear sigma model

Ground state and excitations

Excitations: E(n) < ∞ requires "rapid decrease" of ∂ina.
 use boundary condition

n(x) → (1, 0, 0) (|x | → ∞).

So all those field configurations n can be seen as continuous
mappings S2 → S2:

n : R2 ∪ {∞} ∼= S2︸ ︷︷ ︸
compactified position space

→ S2︸︷︷︸
internal space (spin)

x ∈ R2 7→ n(x), ∞ 7→ (1, 0, 0)
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Hopf term in the non-linear sigma model Repetition: the O(3) non-linear sigma model

Solitons: topological excitations
Continuous mappings S2 → S2 can be classified in homotopy
classes, elements of π2(S2).
π2(S2) ∼= Z with isomorphism φ : n 7→ Q[n],
Q is the topological charge/Pontryagin number/winding number.
Q is a homotopy invariant, i.e. Q is invariant under continuous
deformation.
Time evolution is a continuous deformation of the field, so Q[n]
does not change with time.
Skyrmion: a field configuration with Q = 1. Antiskyrmion: Q = −1.
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Hopf term in the non-linear sigma model Introducing the Hopf term

Inclusion of time dependence

Configuration space of the sigma model:

X =
{

n : R2 → S2 | n is continuous, n(x) → (1, 0, 0) (|x | → ∞)
}

.

Paths n : t 7→ n(t) in X parameterized by time t :
Choose boundary condition:
t0 = ∞,−∞ in time 7→ s0 = nground ≡ (1, 0, 0) ∈ X .
 Every such closed path in X is

n : Rt × R2 → S2, (t , x) 7→ n(t , x)

with
n(t , x) → (1, 0, 0) for | (t , x)︸ ︷︷ ︸

∈R3

| → ∞.
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Hopf term in the non-linear sigma model Introducing the Hopf term

Inclusion of time dependence

By compactification R3 ∪ {∞} ∼= S3:
field evolution n can be seen as continuous mapping

n : S3 → S2.

Result
Every path n which

includes only finite energy configurations
and has the ground state at times t = ±∞

represents an element of π3(S2).
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Hopf term in the non-linear sigma model Introducing the Hopf term

The Hopf term

Let n : S3 → S2.
There exists a mapping H ("Hopf term") with the properties:

H[n] ∈ Z
H is a homotopy invariant, i.e. it does not change under
continuous deformation of n.
H : π3(S2) → Z is a homomorphism:

H[n1 · n2] = H[n1] + H[n2].

For calculation of H[n], use the linking number:
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Hopf term in the non-linear sigma model Connection of linking number and Hopf term

Connection of linking number and Hopf term

Lemma (Sard’s theorem)

Let n : S3 → S2. Then (almost) every point in S2 will have as its
inverse image in S3 a collection of closed curves.

Theorem (Linking number)

Let n : S3 → S2. Choose two values:

n(xa, ta), n(xb, tb) ∈ S2.

Their "worldlines" in Rt × R2 are two collections of closed curves:
γa and γb and

H[n] = Link(γa, γb),

where Link is the linking number of the curves:
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Hopf term in the non-linear sigma model Connection of linking number and Hopf term

Linking number

Link = 0 Link = 1

Link = 2 Link = 3
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Hopf term in the non-linear sigma model The topological action for the sigma model

The topological action

Add Hopf term to the action of the sigma model
(existence and value of s to be decided on microscopic level):

S[n] :=

∫
dtd2x

2∑
µ=0

3∑
a=1

(∂µna)2

︸ ︷︷ ︸
=: S0[n]

+ s︸︷︷︸
∈R

·H[n].

So the propagator is:

K (nGround,−∞|nGround,∞) =

∫
Dn ei(S0[n]+sH[n])

=
∑

α∈π3(S2)

∫
n∈α

Dn eisH(α[n]) eiS0[n] =
∑

α∈π3(S2)

eisH(α)

∫
n∈α

Dn eiS0[n].
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Hopf term in the non-linear sigma model The topological action for the sigma model

The topological phase

K (nG.,−∞|nG.,∞) =
∑

α∈π3(S2)

eisH(α)

∫
n∈α

Dn eiS0[n]

What is special about the topological phase?

Independent of details of a path!
Depends only on properties like:

Existence of rotations of a skyrmion
Existence of skyrmion interchanges
etc.

Analyze special processes spin and statistics of skyrmions!
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Realization of anyons Continuity of pair creation

Continuity of pair creation

skyrmion

antiskyrmion

n

n
n n.skyrmion antiskyrmion

homotopy

spin field in
ground state

Q[nskyrm · nantiskyrm] = Q[nskyrm] + Q[nantiskyrm] = 1 + (−1) = 0
Q[nground] = 0

Q is an isomorphism ⇒ nskyrm · nantiskyrm ' nground
 homotopy h(t , x) between them exists
Take the parameter t to be time continuous creation process.
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Realization of anyons Spin and statistics of skyrmions

Spin of a skyrmion

Regard the following process:
nground at t = −∞.
Create skyrmion-antiskyrmion pair at some time
Choose two values of n on the skyrmion.
Rotate the skyrmion by 2π.
Annihilate skyrmion-antiskyrmion pair.
nground at t = +∞.

What is H[n]?
Construct the worldlines, then use linking number! Â
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Realization of anyons Spin and statistics of skyrmions

Spin of a skyrmion

Skyrmion

Antiskyrmion

Pair creation

Annihilation

x

t

x

Without the rotation: H[n0] = 0 (or H[n0] = c ∈ Z).
With rotation: H[n] = 1 (or H[n] = c + 1).

 Rotation of skyrmion produces relative topological phase eis.

Niels Benedikter ( Uni Stuttgart ) Hopf term and Anyons 22nd July 2009 24 / 29



Realization of anyons Spin and statistics of skyrmions

Spin of a skyrmion

Recall:
Rotation of a state with angular momentum J by an angle of 2π:

U = ei2πJ .

Comparison with eisH[n] = eis  

Result (Spin of skyrmions)
The angular momentum of skyrmions with Hopf term +sH is

J =
s

2π
, s ∈ R.
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Realization of anyons Spin and statistics of skyrmions

Statistics of skyrmions
Regard the following process:

Create two skyrmion-antiskyrmion pairs
Interchange the two skyrmions
Annihilate Ã

(a) (b) (c)

Worldlines: figures (b), (c) show linking number Link = 1 

Result (Statistics of skyrmions)

The statistical phase of skyrmions with Hopf term +sH is eisH[n] = eis

for one interchange.
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Realization of anyons Remark: Skyrmions in 3+1 dimensions

Skyrmions in 3+1 dimensions

For a 3+1 dimensional sigma model:
For static field configurations n : R3 → S2:
π3(S2) ∼= Z, so topologically stabilized configurations can exist.
Including time dependence:

n : Rt × R3 → S2.

Compactification n : S4 → S2  classification in π4(S2) ∼= Z2.
Assume there is a topological phase eiν , with some
homomorphism ν defined on π4(S2):(

eiν[n]
)2

= eiν[n]+iν[n] = eiν[n+n] = eiν[0] = e0  eiν[n] = ±1,

so such a construction fails to yield anyons in 3+1 dimensions.
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Summary

Summary

Spin in 2+1 dimensions is not restricted to integer or half-integer
values.
Homotopy theory: continuous deformation of mappings.

Connection of Hopf term and linking number.
Hopf term is added to the action of the sigma model.

Hopf term yields fractional spin and statistics for skyrmions.
In 3+1 dimensions, the construction does not yield anyons.
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A1: Construction of the Hopf term
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A1: Construction of the Hopf term

Define the topological current

Jµ :=
1

8π
εµνλnaεabc ∂νnb ∂λnc , a, b, c spatial indices.

Jµ is always conserved, independent of the equations of motion (Jµ is
not a Noether current):
∂µJµ = 0 (divergenceless) vector potential Aµ exists:

Jµ = εµνλ∂νAλ (curl).

Definition of the Hopf term:

H :=

∫
dt d2x AµJµ.
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A1: Connection of Hopf term and linking number
~J = ∇× ~A: Gauge transformation ~A 7→ ~A +∇Λ possible.
Coulomb gauge ∇ · ~A = 0 Poisson equation ∆~A = −∇× ~J.
Solution (cf. electrodynamics):

~A =
1

4π

∫
∇r ′ × ~J(~r ′)
|~r −~r ′|

d3r ′
int. by parts

=
1

4π
∇r ×

∫ ~J(~r ′)
|~r −~r ′|

d3r ′.

Assumption (current along curve ∂F ): ~J(~r ′)d3r ′ ≈ Jd~l :

 ~A(~r) ≈ − J
4π

∫
∂F

(~r −~r ′)× d~l
|~r −~r ′|3

.

Hopf term:

H =

∫
~A · ~Jd3r ≈ J

∫
∂F

~A · d~l ≈ − J2

4π

∫ ∫ (
(~r1 −~r2)× d~l2

)
· d~l1

|~r1 −~r2|3

i.e. for J = 1 the Gauß integral for the linking number.
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A2: Why ν is a homomorphism
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A2: Why ν is a homomorphism

General approach to quantum statistics (based on point particles):
Interchange of particles by transport in position space:
Indistinguishability closed path in configuration space. Ä

Idea: Describe quantum statistics with closed paths in
configuration space.
 classify "inequivalent" (regarding interchange) closed paths by
fundamental group (first homotopy group) of the configuration
space.
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A2: Path integral in non-trivial topology

Configuration space X .
We know: For a configuration q ∈ X and action S:
Propagator from q to q (closed paths):

K (q, t1|q, t2) =

∫
q̃(t1)=q̃(t2)=q

Dq̃ eiS[q̃].

Grouping paths together in equivalence classes:

K (q, t1|q, t2) =
∑

α∈π1(X)

∫
q̃∈α

Dq̃ eiS[q̃].

(Remember: α = class of paths which can be deformed into each
other.)
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A2: Path integral in non-trivial topology

Generalization of the path integral:
Grouped propagator:

K (q, t1|q, t2) =
∑

α∈π1(X)

∫
q̃∈α

Dq̃ eiS[q̃].

Allow a factor χ(α) ∈ C:

K (q, t1|q, t2) =
∑

α∈π1(X)

χ(α)

∫
q̃∈α

Dq̃ eiS[q̃].

Derivation of path integral for one particle: X = R3. But π1(R3) = {1},
so it is consistent.
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A2: Path integral in non-trivial topology

Conservation of probability |χ(α)| = 1, χ(α) = eiν(α).
Propagate a particle twice: on q̃1 ∈ α1 and on q̃2 ∈ α2,
or concatenate to q̃1 · q̃2 ∈ α1 · α2 and propagate once:
 χ(α1) · χ(α2) = χ(α1 · α2)
 homomorphism/1D-representation of π1(X ).
Assign the phase to the states instead of the propagator:
 multivalued states Ψα ≈ eiν(α)Ψ, with ordinary propagator
K =

∫
Dq̃ eiS[q̃].

Result (Hopf term)

In the non-linear sigma model: π1(X ) ∼= π3(S2). The Hopf term then
yields χ = eisH as a 1D-representation of π1(X ).
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A3: Point particles, fermions and bosons
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A3: Configuration space of point particles

One particle in Rd . Configuration space of N identical particles?
Indistinguishability identify permutations:

(x1, . . . xN) ∼ (xσ(1), . . . xσ(N)), σ ∈ SN .

Allow at most one particle in each place: remove the "diagonal"
∆ = {(x1, . . . xN) | ∃i , j : xi = xj}.

So the configuration space is

X =
(
(Rd)N\∆

)
/SN .
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A3: Configuration space of point particles

Example: N = 2, d = 2. Then X = R2 × r2
2 (R2 center-of-mass

coordinate, r2
2 is R2\{0} with ~x ∼ −~x).

 r2
2 = "cone without the tip", lots of non-homotopic paths (looping

n ∈ N times around the cone) Å

 many possibilities. Compare:

Result (3+1 dimensions)
For N particles in d ≥ 3 space dimensions, the fundamental group of
the configuration space is

π1(X ) = SN , the group of permutations.

The only 1D-representations χ of SN are:

symmetric (bosons) and antisymmetric (fermions).
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A4: The finite energy boundary condition
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A4: The finite energy boundary condition

Result (The finite energy boundary condition)
Field configuration (w.l.o.g. only one component) in polar coordinates:

n : (θ, r) 7→ n(θ, r).

The finite energy condition E [n] < ∞ requires

lim
r→∞

r ||∇n|| = lim
r→∞

r ||∂n
∂r

~er +
1
r

∂n
∂θ

~eθ|| = 0.

We want to show (with some technical assumptions):

⇒ n∞(θ) := lim
r →∞

n(r , θ) is constant w.r. to θ.

Proof: See blackboard.
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