

"Good morning, and welcome to The Wonders of Physics."

Hopf term and Anyons Topological Excitations II

Advanced Seminar Quantum Field Theory of Low-dimensional Systems

Niels Benedikter

Uni Stuttgart

22nd July 2009

Niels Benedikter (Uni Stuttgart)

Hopf term and Anyons

22nd July 2009 2 / 29

Overview

Motivation and homotopy theory

- Spin in different space dimensions
- Repetition: Homotopy groups
- 2 Hopf term in the non-linear sigma model
 - Repetition: the O(3) non-linear sigma model
 - Introducing the Hopf term
 - Connection of linking number and Hopf term
 - The topological action for the sigma model

Realization of anyons

- Continuity of pair creation
- Spin and statistics of skyrmions
- Remark: Skyrmions in 3+1 dimensions

Summary

물 이 이 물 이 물 말 물

Overview

- Spin in different space dimensions
- Repetition: Homotopy groups
- 2 Hopf term in the non-linear sigma model
 - Repetition: the O(3) non-linear sigma model
 - Introducing the Hopf term
 - Connection of linking number and Hopf term
 - The topological action for the sigma model

3 Realization of anyons

- Continuity of pair creation
- Spin and statistics of skyrmions
- Remark: Skyrmions in 3+1 dimensions

Summary

Spin in different space dimensions

 In 3+1 dimensions: 3 axes of rotation → 3 operators of angular momentum with commutator relations

$$[S_i, S_j] = i\varepsilon_{ijk}S_k.$$

→ Spin is integer or half-integer, eigenvalues:

$$\mathbf{S}^2 \ket{s,m} = s(s+1) \ket{s,m}, \quad ext{with } s \in rac{1}{2} \mathbb{N}.$$

In 2+1 dimensions: Only one axis of rotation exists.
 ~> only one operator of angular momentum, no commutators!

Result

In 2+1 dimensions, spin is not restricted to integer and half-integer values.

《曰》《圖》《曰》《曰》 되는

Homotopy

Connection with quantum statistics? *Idea*: "coarse" classification of mappings allows us to discuss interchange of particles etc.

Definition (Continuous deformation/homotopy)

Let X be a topological space. A homotopy between two continuous mappings $f_1, f_2 : S^n \to X$ is a continuous mapping $h : S^n \times [0, 1] \to X$ with

$$h(x,0) = f_1(x), \ h(x,1) = f_2(x) \quad \forall x \in S^n.$$

Define $f_1 \sim f_2$ (equivalence) if a homotopy between them exists.

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三回日 のへ⊙

Homotopy groups

Fix a base point $x_0 \in X$, $s_0 \in S^n$ and require

$$f(s_0) = x_0, \quad h(s_0, t) = x_0 \quad \forall t \in [0, 1].$$

Notation: $C(S^n, X) := \{f : S^n \to X \mid f \text{ continuous}; x_0, s_0 \text{ fixed}\}$.

Definition (Homotopy groups)

The nth homotopy group is the set of equivalence classes

$$\pi_n(X) := C(S^n, X) / \sim .$$

Remark: $\pi_n(X)$ does not depend on x_0 and s_0 (if X is path-connected), but they need to be fixed!

The multiplication law in $\pi_n(X)$

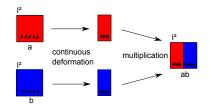
n-cube $I^n := [0, 1] \times \cdots \times [0, 1]$, surface (boundary) ∂I^n .

For two such mappings α, β :

$$\alpha \cdot \beta(x_1, \dots, x_n) := \begin{cases} \alpha(2x_1, x_2, \dots, x_n) & 0 \le x_1 \le 1/2 \\ \beta(2x_1 - 1, x_2, \dots, x_n) & 1/2 < x_1 \le 1 \end{cases}$$

Example 1: mappings $a, b : S^2 \rightarrow S^2$:

Example 2: $\pi_1(X)$, i.e. $S^1 \rightarrow X$ ②



Homotopy groups of spheres

Example: Take $X = S^n$. $\pi_k(X) = \pi_k(S^n) \cong ?$

Homotopy groups of spheres

Example: Take $X = S^n$. $\pi_k(X) = \pi_k(S^n) \cong$? en.wikipedia.org/wiki/Homotopy_groups_of_spheres:

	π_1	π_2	π_3	π_4	π_5	π_{6}	π_7	π_8	π_9
S^0	0	0	0	0	0	0	0	0	0
S^1	\mathbb{Z}	0	0	0	0	0	0	0	0
S^2	0	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{12}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_3
S^3	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{12}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_3
S^4	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2		\mathbb{Z}_2^2	\mathbb{Z}_2^2
S^5	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}^-	\mathbb{Z}_2^-
S^6	0	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}
S^7	0	0	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2
S^8	0	0	0	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2

where $\mathbb{Z}_m = \mathbb{Z}/m\mathbb{Z} = (\{0, 1, \dots m-1\}, + \mod m).$

т

Overview

- Motivation and homotopy theory
 - Spin in different space dimensions
 - Repetition: Homotopy groups
- Hopf term in the non-linear sigma model
 - Repetition: the O(3) non-linear sigma model
 - Introducing the Hopf term
 - Connection of linking number and Hopf term
 - The topological action for the sigma model

3 Realization of anyons

- Continuity of pair creation
- Spin and statistics of skyrmions
- Remark: Skyrmions in 3+1 dimensions

Summary

The non-linear sigma model

• Describes a *continuous* spin field in the 2d plane:

 $n: \mathbb{R}^2 \to S^2 \subset \mathbb{R}^3, \quad x \mapsto n(x), \text{ a unit vector.}$

• Energy given by classical Hamiltonian:

$$E(n) = \int \sum_{a=1}^{3} | \sum_{\text{spatial derivatives}} \nabla n^{a} |^{2} d^{2}x \ge 0$$

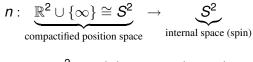
No prefered orientation of *n*: degenerate ground state,
 e.g. n = (1,0,0), which has ∂_in^a = 0, → E(n) = 0.

Ground state and excitations

Excitations: $E(n) < \infty$ requires "rapid decrease" of $\partial_i n^a$. \rightsquigarrow use boundary condition

$$n(x) \rightarrow (1,0,0) \quad (|x| \rightarrow \infty).$$

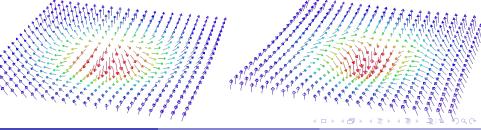
So all those field configurations *n* can be seen as continuous mappings $S^2 \rightarrow S^2$:



 $x \in \mathbb{R}^2 \mapsto n(x), \quad \infty \mapsto (1,0,0)$

Solitons: topological excitations

- Continuous mappings $S^2 \rightarrow S^2$ can be classified in homotopy classes, elements of $\pi_2(S^2)$.
- π₂(S²) ≅ ℤ with isomorphism φ : n ↦ Q[n],
 Q is the topological charge/Pontryagin number/winding number.
- *Q* is a homotopy invariant, i.e. *Q* is invariant under continuous deformation.
- Time evolution is a continuous deformation of the field, so *Q*[*n*] does not change with time.
- Skyrmion: a field configuration with Q = 1. Antiskyrmion: Q = -1.



Inclusion of time dependence

• Configuration space of the sigma model:

$$X = \left\{ n : \mathbb{R}^2 \to S^2 \mid n \text{ is continuous, } n(x) \to (1,0,0) \ (|x| \to \infty) \right\}.$$

• Paths $\underline{n}: t \mapsto \underline{n}(t)$ in X parameterized by time t: Choose boundary condition: $t_0 = \infty, -\infty$ in time $\mapsto s_0 = n_{\text{ground}} \equiv (1, 0, 0) \in X$.

~> Every such closed path in X is

$$\underline{n}: \mathbb{R}_t \times \mathbb{R}^2 \to S^2, \quad (t, x) \mapsto \underline{n}(t, x)$$

with

$$\underline{n}(t,x) \to (1,0,0) \quad \text{for } |\underbrace{(t,x)}_{\in \mathbb{R}^3}| \to \infty.$$

Inclusion of time dependence

By compactification $\mathbb{R}^3 \cup \{\infty\} \cong S^3$: field evolution <u>*n*</u> can be seen as continuous mapping

$$\underline{n}: S^3 \rightarrow S^2.$$

Result

Every path <u>n</u> which

- includes only finite energy configurations
- and has the ground state at times $t = \pm \infty$

represents an element of $\pi_3(S^2)$.

The Hopf term

Let $\underline{n}: S^3 \to S^2$. There exists a mapping *H* ("Hopf term") with the properties:

- $H[\underline{n}] \in \mathbb{Z}$
- *H* is a homotopy invariant, i.e. it does not change under continuous deformation of <u>*n*</u>.
- $H: \pi_3(S^2) \to \mathbb{Z}$ is a homomorphism:

$$H[\underline{n}_1 \cdot \underline{n}_2] = H[\underline{n}_1] + H[\underline{n}_2].$$

• For calculation of *H*[*n*], use the linking number:

Connection of linking number and Hopf term

Lemma (Sard's theorem)

Let $\underline{n}: S^3 \to S^2$. Then (almost) every point in S^2 will have as its inverse image in S^3 a collection of closed curves.

Connection of linking number and Hopf term

Lemma (Sard's theorem)

Let $\underline{n}: S^3 \to S^2$. Then (almost) every point in S^2 will have as its inverse image in S^3 a collection of closed curves.

Theorem (Linking number)

Let $\underline{n}: S^3 \rightarrow S^2$. Choose two values:

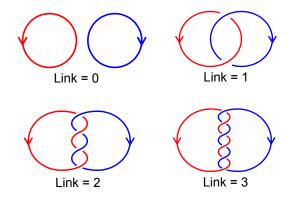
 $\underline{n}(x_a, t_a), \ \underline{n}(x_b, t_b) \in S^2.$

Their "worldlines" in $\mathbb{R}_t \times \mathbb{R}^2$ are two collections of closed curves: γ_a and γ_b and

$$H[\underline{n}] = Link(\gamma_a, \gamma_b),$$

where *Link* is the linking number of the curves:

Linking number



The topological action

Add Hopf term to the action of the sigma model (existence and value of *s* to be decided on microscopic level):

$$S[\underline{n}] := \underbrace{\int \mathrm{d}t \mathrm{d}^2 x \, \sum_{\mu=0}^2 \sum_{a=1}^3 (\partial_\mu \underline{n}^a)^2}_{=: S_0[\underline{n}]} + \underbrace{s}_{\in \mathbb{R}} \cdot H[\underline{n}].$$

So the propagator is:

$$\begin{split} & \mathcal{K}(n_{\text{Ground}}, -\infty | n_{\text{Ground}}, \infty) = \int \mathcal{D}\underline{n} \; \boldsymbol{e}^{i(\mathcal{S}_0[\underline{n}] + \boldsymbol{sH}[\underline{n}])} \\ &= \sum_{\alpha \in \pi_3(\mathcal{S}^2)} \int_{\underline{n} \in \alpha} \mathcal{D}\underline{n} \; \boldsymbol{e}^{i \mathcal{SH}(\alpha[\underline{n}])} \; \boldsymbol{e}^{i \mathcal{S}_0[\underline{n}]} = \sum_{\alpha \in \pi_3(\mathcal{S}^2)} \boldsymbol{e}^{i \mathcal{SH}(\alpha)} \int_{\underline{n} \in \alpha} \mathcal{D}\underline{n} \; \boldsymbol{e}^{i \mathcal{S}_0[\underline{n}]}. \end{split}$$

《曰》《圖》《曰》《曰》 되는

A D b 4 A b

The topological phase

$$\mathcal{K}(\mathbf{n}_{\mathrm{G.}}, -\infty | \mathbf{n}_{\mathrm{G.}}, \infty) = \sum_{\alpha \in \pi_{3}(S^{2})} e^{i S \mathcal{H}(\alpha)} \int_{\underline{n} \in \alpha} \mathcal{D}\underline{n} \ e^{i S_{0}[\underline{n}]}$$

What is special about the topological phase?

Independent of details of a path! Depends only on properties like:

- Existence of rotations of a skyrmion
- Existence of skyrmion interchanges
- etc.

Analyze special processes ~> spin and statistics of skyrmions!

Overview

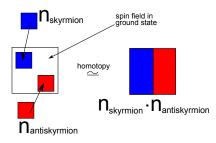
- Motivation and homotopy theory
 Spin in different space dimensions
 Repetition: Homotopy groups
 Hopf term in the non-linear sigma model
 Repetition: the O(3) non-linear sigma model
 Introducing the Hopf term
 Connection of linking number and Hopf term
 - The topological action for the sigma model

Realization of anyons

- Continuity of pair creation
- Spin and statistics of skyrmions
- Remark: Skyrmions in 3+1 dimensions

Summary

Continuity of pair creation



• $Q[n_{skyrm} \cdot n_{antiskyrm}] = Q[n_{skyrm}] + Q[n_{antiskyrm}] = 1 + (-1) = 0$ • $Q[n_{ground}] = 0$

Q is an isomorphism $\Rightarrow n_{skyrm} \cdot n_{antiskyrm} \simeq n_{ground}$ \rightsquigarrow homotopy h(t, x) between them exists Take the parameter *t* to be time \rightsquigarrow continuous creation process.

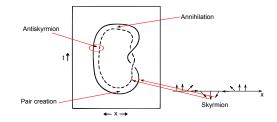
Spin of a skyrmion

Regard the following process:

- n_{ground} at $t = -\infty$.
- Create skyrmion-antiskyrmion pair at some time
- Choose two values of *n* on the skyrmion.
- Rotate the skyrmion by 2π .
- Annihilate skyrmion-antiskyrmion pair.
- n_{ground} at $t = +\infty$.

What is $H[\underline{n}]$? Construct the worldlines, then use linking number! ③

Spin of a skyrmion



Without the rotation: $H[\underline{n}_0] = 0$ (or $H[\underline{n}_0] = c \in \mathbb{Z}$).With rotation: $H[\underline{n}] = 1$ (or $H[\underline{n}] = c + 1$).

 \sim Rotation of skyrmion produces relative topological phase e^{is} .

Spin of a skyrmion

Recall:

Rotation of a state with angular momentum *J* by an angle of 2π :

$$U=e^{i2\pi J}.$$

Comparison with $e^{isH[\underline{n}]} = e^{is} \rightsquigarrow$

Result (Spin of skyrmions)

The angular momentum of skyrmions with Hopf term +sH is

$$J=rac{s}{2\pi},\quad s\in\mathbb{R}.$$

Niels Benedikter (Uni Stuttgart)

22nd July 2009 25 / 29

Statistics of skyrmions

Regard the following process:

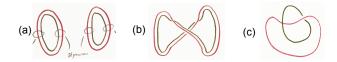
- Create two skyrmion-antiskyrmion pairs
- Interchange the two skyrmions
- Annihilate ④

< 6 b

Statistics of skyrmions

Regard the following process:

- Create two skyrmion-antiskyrmion pairs
- Interchange the two skyrmions
- Annihilate ④



Worldlines: figures (b), (c) show linking number $Link = 1 \rightsquigarrow$

Result (Statistics of skyrmions)

The statistical phase of skyrmions with Hopf term +sH is $e^{isH[\underline{n}]} = e^{is}$ for one interchange.

Niels Benedikter (Uni Stuttgart)

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ● ●

Skyrmions in 3+1 dimensions

For a 3+1 dimensional sigma model:

- For static field configurations $n : \mathbb{R}^3 \to S^2$: $\pi_3(S^2) \cong \mathbb{Z}$, so topologically stabilized configurations can exist.
- Including time dependence:

$$\underline{n}:\mathbb{R}_t\times\mathbb{R}^3\to S^2.$$

Compactification $\underline{n}: S^4 \to S^2 \rightsquigarrow$ classification in $\pi_4(S^2) \cong \mathbb{Z}_2$.

 Assume there is a topological phase e^{iν}, with some homomorphism ν defined on π₄(S²):

$$\left(e^{i\nu[\underline{n}]}\right)^2 = e^{i\nu[\underline{n}] + i\nu[\underline{n}]} = e^{i\nu[\underline{n} + \underline{n}]} = e^{i\nu[0]} = e^0 \quad \rightsquigarrow \quad e^{i\nu[\underline{n}]} = \pm 1,$$

so such a construction fails to yield anyons in 3+1 dimensions.

Overview

- Spin in different space dimensions Repetition: Homotopy groups Introducing the Hopf term ۲ Connection of linking number and Hopf term The topological action for the sigma model Continuity of pair creation
 - Spin and statistics of skyrmions
 - Remark: Skyrmions in 3+1 dimensions

Summary

Summary

- Spin in 2+1 dimensions is not restricted to integer or half-integer values.
- Homotopy theory: continuous deformation of mappings.
- Connection of Hopf term and linking number.
- Hopf term is added to the action of the sigma model.
- Hopf term yields fractional spin and statistics for skyrmions.
- In 3+1 dimensions, the construction does not yield anyons.

A1: Construction of the Hopf term

A1: Construction of the Hopf term

Define the topological current

$$J^{\mu} := \frac{1}{8\pi} \varepsilon^{\mu\nu\lambda} \underline{n}^{a} \varepsilon^{abc} \partial_{\nu} \underline{n}^{b} \partial_{\lambda} \underline{n}^{c}, \quad a, b, c \text{ spatial indices.}$$

 J^{μ} is always conserved, independent of the equations of motion (J^{μ} is *not* a Noether current):

 $\partial_{\mu}J^{\mu} = 0$ (divergenceless) \rightsquigarrow vector potential A_{μ} exists:

$$J^{\mu} = \varepsilon^{\mu\nu\lambda} \partial_{\nu} A_{\lambda}$$
 (curl).

Definition of the Hopf term:

$$H:=\int \mathrm{d}t \; \mathrm{d}^2x \; A_\mu J^\mu.$$

A1: Connection of Hopf term and linking number $\vec{J} = \nabla \times \vec{A}$: Gauge transformation $\vec{A} \mapsto \vec{A} + \nabla \Lambda$ possible. Coulomb gauge $\nabla \cdot \vec{A} = 0 \rightsquigarrow$ Poisson equation $\Delta \vec{A} = -\nabla \times \vec{J}$. Solution (cf. electrodynamics):

$$\vec{A} = \frac{1}{4\pi} \int \frac{\nabla_{r'} \times \vec{J}(\vec{r}')}{|\vec{r} - \vec{r}'|} \mathrm{d}^3 r' \stackrel{\mathrm{int. by parts}}{=} \frac{1}{4\pi} \nabla_r \times \int \frac{\vec{J}(\vec{r}')}{|\vec{r} - \vec{r}'|} \mathrm{d}^3 r'.$$

Assumption (current along curve ∂F): $\vec{J}(\vec{r}')d^3r' \approx Jd\vec{l}$:

$$\rightsquigarrow ec{\mathcal{A}}(ec{r}) pprox -rac{J}{4\pi} \int_{\partial \mathsf{F}} rac{(ec{r}-ec{r}') imes \mathrm{d}ec{l}}{|ec{r}-ec{r}'|^3}.$$

Hopf term:

$$\mathcal{H} = \int \vec{A} \cdot \vec{J} \mathrm{d}^3 r \approx J \int_{\partial F} \vec{A} \cdot \mathrm{d}\vec{l} \approx -\frac{J^2}{4\pi} \int \int \frac{\left((\vec{r}_1 - \vec{r}_2) \times \mathrm{d}\vec{l}_2\right) \cdot \mathrm{d}\vec{l}_1}{|\vec{r}_1 - \vec{r}_2|^3}$$

i.e. for J = 1 the Gauß integral for the linking number,

A2: Why ν is a homomorphism

A2: Why ν is a homomorphism

General approach to quantum statistics (based on point particles):

- Interchange of particles by transport in position space: Indistinguishability ~> closed path in configuration space. (5)
- Idea: Describe quantum statistics with closed paths in configuration space.
- ~> classify "inequivalent" (regarding interchange) closed paths by fundamental group (first homotopy group) of the configuration space.

A2: Path integral in non-trivial topology

Configuration space X.

 We know: For a configuration *q* ∈ *X* and action *S*: Propagator from *q* to *q* (closed paths):

$$\mathcal{K}(\boldsymbol{q},t_1|\boldsymbol{q},t_2) = \int_{ ilde{q}(t_1)= ilde{q}(t_2)=q} \mathcal{D} \tilde{\boldsymbol{q}} \; \boldsymbol{e}^{i\mathcal{S}[ilde{q}]}.$$

• Grouping paths together in equivalence classes:

$$\mathcal{K}(\boldsymbol{q}, t_1 | \boldsymbol{q}, t_2) = \sum_{lpha \in \pi_1(X)} \int_{\tilde{\boldsymbol{q}} \in lpha} \mathcal{D} \tilde{\boldsymbol{q}} \; \boldsymbol{e}^{i \mathcal{S}[\tilde{\boldsymbol{q}}]}.$$

(Remember: $\alpha =$ class of paths which can be deformed into each other.)

A2: Path integral in non-trivial topology

Generalization of the path integral:

• Grouped propagator:

$$K(\boldsymbol{q}, t_1 | \boldsymbol{q}, t_2) = \sum_{\alpha \in \pi_1(X)} \int_{\tilde{\boldsymbol{q}} \in \alpha} \mathcal{D} \tilde{\boldsymbol{q}} \; \boldsymbol{e}^{i \mathcal{S}[\tilde{\boldsymbol{q}}]}$$

• Allow a factor $\chi(\alpha) \in \mathbb{C}$:

$$K(\boldsymbol{q}, \boldsymbol{t_1}|\boldsymbol{q}, \boldsymbol{t_2}) = \sum_{\alpha \in \pi_1(X)} \chi(\alpha) \int_{\tilde{\boldsymbol{q}} \in \alpha} \mathcal{D}\tilde{\boldsymbol{q}} \; \boldsymbol{e}^{iS[\tilde{\boldsymbol{q}}]}.$$

Derivation of path integral for one particle: $X = \mathbb{R}^3$. But $\pi_1(\mathbb{R}^3) = \{1\}$, so it is consistent.

A2: Path integral in non-trivial topology

- Conservation of probability $\rightsquigarrow |\chi(\alpha)| = 1, \chi(\alpha) = e^{i\nu(\alpha)}$.
- Propagate a particle twice: on *q*₁ ∈ α₁ and on *q*₂ ∈ α₂, or concatenate to *q*₁ · *q*₂ ∈ α₁ · α₂ and propagate once:
 → χ(α₁) · χ(α₂) = χ(α₁ · α₂)
 → homomorphism/*1D-representation* of π₁(*X*).
- Assign the phase to the states instead of the propagator:
 → multivalued states Ψ_α ≈ e^{iν(α)}Ψ, with ordinary propagator K = ∫ Dq̃ e^{iS[q̃]}.

Result (Hopf term)

In the non-linear sigma model: $\pi_1(X) \cong \pi_3(S^2)$. The Hopf term then yields $\chi = e^{isH}$ as a 1D-representation of $\pi_1(X)$.

A3: Point particles, fermions and bosons

A3: Configuration space of point particles

One particle in ℝ^d. Configuration space of *N* identical particles?
Indistinguishability → identify permutations:

$$(x_1,\ldots x_N) \sim (x_{\sigma(1)},\ldots x_{\sigma(N)}), \quad \sigma \in \mathcal{S}_N.$$

• Allow at most one particle in each place: remove the "diagonal" $\Delta = \{(x_1, \dots, x_N) \mid \exists i, j : x_i = x_j\}.$

So the configuration space is

$$X = \left((\mathbb{R}^d)^N \backslash \Delta \right) / \mathcal{S}_N.$$

A3: Configuration space of point particles

Example: N = 2, d = 2. Then $X = \mathbb{R}^2 \times r_2^2$ (\mathbb{R}^2 center-of-mass coordinate, r_2^2 is $\mathbb{R}^2 \setminus \{0\}$ with $\vec{x} \sim -\vec{x}$). $\rightsquigarrow r_2^2 =$ "cone without the tip", lots of non-homotopic paths (looping $n \in \mathbb{N}$ times around the cone) (6) \rightsquigarrow many possibilities. Compare:

Result (3+1 dimensions)

For N particles in $d \ge 3$ space dimensions, the fundamental group of the configuration space is

 $\pi_1(X) = S_N$, the group of permutations.

The only 1D-representations χ of S_N are:

symmetric (bosons) and antisymmetric (fermions).

A4: The finite energy boundary condition

A4: The finite energy boundary condition

Result (The finite energy boundary condition) Field configuration (w.l.o.g. only one component) in polar coordinates:

 $n: (\theta, r) \mapsto n(\theta, r).$

The finite energy condition $E[n] < \infty$ requires

$$\lim_{r\to\infty}r||\nabla n||=\lim_{r\to\infty}r||\frac{\partial n}{\partial r}\vec{e}_r+\frac{1}{r}\frac{\partial n}{\partial \theta}\vec{e}_\theta||=0.$$

We want to show (with some technical assumptions):

 $\Rightarrow n_{\infty}(\theta) := \lim_{r \to \infty} n(r, \theta)$ is constant w.r. to θ .

Proof: See blackboard.

Niels Benedikter (Uni Stuttgart)