

Established by the European Commission

Institute of Science and Technology

The Excitation Spectrum of Weakly Interacting Bosons

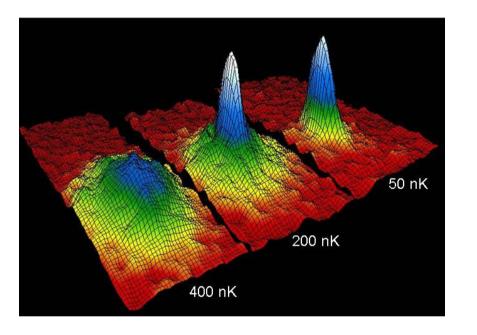
Robert Seiringer IST Austria

Applications of Bogoliubov Theory

Online Summer School, June 19, 2020

INTRODUCTION

First realization of **Bose-Einstein Condensation** (BEC) in cold atomic gases in 1995:



In these experiments, a large number of (bosonic) atoms is confined to a trap and cooled to very low temperatures. Below a **critical temperature** condensation of a large fraction of particles into the same one-particle state occurs.

Interesting **quantum phenomena** arise, like the appearance of quantized vortices and superfluidity. The latter is related to the low-energy **excitation spectrum** of the system.

BEC was predicted by Einstein in 1924 from considerations of the **non-interacting** Bose gas. The presence of particle interactions represents a major difficulty for a rigorous derivation of this phenomenon.

The Bose Gas: A Quantum Many-Body Problem

Quantum-mechanical description in terms of the **Hamiltonian** for a gas of N bosons in a trap potential V(x), interacting via a pair-potential v(x). In appropriate units,

$$H_N = \sum_{i=1}^N \left(-\Delta_i + V(x_i) \right) + \sum_{1 \le i < j \le N} v(x_i - x_j)$$

The kinetic energy is described by the Δ , the Laplacian on \mathbb{R}^3 .

As appropriate for **bosons**, H acts on **permutation-symmetric** wave functions $\Psi(x_1, \ldots, x_N)$ in $\bigotimes^N L^2(\mathbb{R}^3)$.

The interaction v is assumed to be **repulsive** and of **short range**.

We will be interested in the excitation spectrum, i.e., the eigenvalues of H near the ground state energy $E_0(N) = \inf \operatorname{spec} H_N$.

WEAK INTERACTIONS

To describe a regime of weak interactions, one can consider the **mean-field** or **Hartree** scaling, where one takes

$$H_N = \sum_{i=1}^N \left(-\Delta_i + V(x_i) \right) + \frac{1}{N} \sum_{1 \le i < j \le N} v(x_i - x_j)$$

In this case, kinetic, trapping and interaction energies are of the same order for large N. In this limit, one has

$$\lim_{N \to \infty} \frac{E_0(N)}{N} = E^{\mathrm{H}} = \min_{\phi} \mathcal{E}^{\mathrm{H}}(\phi)$$

where

$$\mathcal{E}^{\mathrm{H}}(\phi) = \int_{\mathbb{R}^3} \left(|\nabla \phi(x)|^2 + V(x) |\phi(x)|^2 \right) dx + \frac{1}{2} \iint_{\mathbb{R}^3 \times \mathbb{R}^3} |\phi(x)|^2 v(x-y) |\phi(y)|^2 dx \, dy$$

In addition, there is **complete Bose–Einstein condensation** in the ground state, with condensate wave function giving by the minimizer of the Hartree functional, which will be denoted by ϕ_0 (and will be assumed to be unique).

THE BOGOLIUBOV APPROXIMATION

In the language of second quantization, H_N equals

$$\int_{\mathbb{R}^3} \left(\nabla a^{\dagger}(x) \nabla a(x) + V(x) a^{\dagger}(x) a(x) \right) dx + \frac{1}{2N} \iint_{\mathbb{R}^3 \times \mathbb{R}^3} a^{\dagger}(x) a^{\dagger}(y) v(x-y) a(y) a(x) dx dy$$

The **Bogoliubov approximation** consists of writing $a(x) = \sqrt{N}\phi_0(x) + b(x)$ and dropping all terms higher than quadratic in b(x).

The zeroth order term is simply $\mathcal{E}^{H}(\phi_{0}) = E^{H}$. The resulting quadratic Hamiltonian reads

$$\begin{split} H^{\mathrm{Bog}} &= \int\limits_{\mathbb{R}^3} \left(\nabla b^{\dagger}(x) \nabla b(x) + V(x) b^{\dagger}(x) b(x) + |\phi_0|^2 * v(x) b^{\dagger}(x) b(x) \right) dx \\ &+ \frac{1}{2} \iint\limits_{\mathbb{R}^3 \times \mathbb{R}^3} w(x, y) \left(2b^{\dagger}(x) b(y) + b^{\dagger}(x) b^{\dagger}(y) + b(x) b(y) \right) dx dy \end{split}$$

where $w(x,y) = \phi_0(x)v(x-y)\phi_0(y)$, and * denotes convolution.

BOGOLIUBOV TRANSFORMATION

The quadratic operator H^{Bog} can be diagonalized via a **Bogoliubov transformation**: Let

$$K = -\Delta + V(x) + |\phi_0|^2 * v(x) - \varepsilon_0 \quad , \quad \varepsilon_0 = E^{\mathrm{H}} + \frac{1}{2} \int_{\mathbb{R}^3 \times \mathbb{R}^3} |\phi_0(x)|^2 v(x-y) |\phi_0(y)|^2 dx dy$$

and

$$E = \left(K^{1/2} \left(K + 2w \right) K^{1/2} \right)^{1/2}$$

Then

$$UH^{\mathrm{Bog}}U^{\dagger} = E^{\mathrm{Bog}} + \sum_{i} e_{i}a_{i}^{\dagger}a_{i}$$

where $e_i > 0$ are the (non-zero) eigenvalues of E, and the a_i are suitable linear combinations of $\int f(x)b^{\dagger}(x)$ and $\int f(x)b(x)dx$, respectively, with $\int \phi_0(x)f(x)dx = 0$.

In particular, the excitation spectrum of H^{Bog} is of the form

$$\sum_i e_i n_i$$
 with $n_i \in \mathbb{N}$.

MAIN RESULTS

THEOREM 1 (Grech, S, 2013). The ground state energy $E_0(N)$ of H_N equals

$$E_0(N) = NE^H + E^{\text{Bog}} + O(N^{-1/2})$$

with

$$E^{\text{Bog}} = \frac{1}{2} \operatorname{Tr} \left(E - K - w \right)$$

Moreover, the excitation spectrum of $H_N - E_0(N)$ below an energy ξ is equal to

$$\sum_{i} e_i n_i + O\left(\xi^{3/2} N^{-1/2}\right)$$

where $e_i > 0$ are the eigenvalues of E, and $n_i \in \{0, 1, 2, ...\}$ for all i.

The proof consists of constructing a unitary operator U that makes UH_NU^{\dagger} close to the operator $NE^{\rm H} + E^{\rm Bog} + \sum_i e_i a_i^{\dagger} a_i$. In particular, the **excited eigenfunctions** can be obtained by acting with products of $Ua_i^{\dagger}a_0U^{\dagger}$ on the ground state!

Eigenvalues of \boldsymbol{E}

The emergence of the effective operator E can also be understood as follows. One considers the **time-dependent Hartree equation**

$$i\partial_t \phi(x,t) = (-\Delta + V(x) + v * |\phi(x,t)|^2)\phi(x,t)$$

and looks for solutions of the form

$$\phi(x,t) = e^{-i\varepsilon_0 t} (\phi_0(x) + u(x) e^{-i\omega t} + \overline{y(x)} e^{i\omega t})$$

for some $\omega > 0$. Expanding to first order in u and y leads to the **Bogoliubov–de-Gennes equations**

$$\left(\begin{array}{cc} K+w & w \\ -w & -(K+w) \end{array}\right) \left(\begin{array}{c} u \\ y \end{array}\right) = \omega \left(\begin{array}{c} u \\ y \end{array}\right) \,.$$

The positive values which can be assumed by ω are then interpreted as excitation energies. This is in agreement with our result: the values for ω obtained this way are precisely the eigenvalues of E.

THE TRANSLATION-INVARIANT CASE

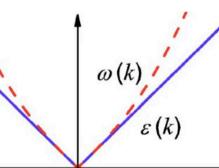
In the absence of a trap (V(x) = 0, and the particles confined to a torus), H_N commutes with the **total momentum** $P = -i \sum_{j=1}^{N} \nabla_j$ and hence one can look at their **joint spectrum**. Of particular relevance is the infimum

 $E_q(N) = \inf \operatorname{spec} H_N \upharpoonright_{P=q}$

The operator E is then diagonal in momentum space, with eigenvalues

$$e_p = |p|\sqrt{2\widehat{v}(p) + |p|^2}$$

In particular, for interacting systems one obtains a **linear** behavior of $E_q(N) - E_0(N)$ for small q.



The linear behavior is important for the superfluid behavior of the system. According to Landau, $\min_q (E_q(N) - E_0(N))/|q|$ is, in fact, the critical velocity for frictionless flow.

GENERALIZATIONS AND EXTENSIONS

- [Lewin, Nam, Serfaty, Solovej, 2014] extended this result to more general types of kinetic energy and interaction operators (with less control on the error terms, however)
- In the translation invariant case, [Dereziński, Napiórkowski, 2014] studied the case of weakly N-dependent v, scaling to a δ-function as N → ∞ (or, equivalently, the case of large volume)
- Generalized to potentials of the form $N^{-1+3\beta}v(N^{\beta}x)$ with $0 \le \beta \le 1$ by [Boccato, Brennecke, Cenatiempo, Schlein, 2017–2019]
- Degenerate Hartree minimizers, as well as **collective excitations**, where condensation occurs in a (non-linear) excited state of the Hartree functional [Nam, S, 2015]
- Bogoliubov correction to the Hartree dynamics of bosons ([Lewin, Nam, Schlein, 2013] ...)
- In the Hartree regime, an expansion to all orders in 1/N is possible [Boßmann, Petrat, S, 2020]. (Related work by [Pizzo 2015].)

Ideas in the Proof

The proof consists of two main steps:

1. Map $L^2_{sym}(\mathbb{R}^{3N})$ to $\mathcal{F}_{\perp}^{\leq N} \subset \mathcal{F}_{\perp}$, the Fock space over the orthogonal complement of ϕ_0 , via

$$\Psi = \sum_{n=0}^{N} \psi_n \otimes \phi_0^{\otimes N-n} , \quad U\Psi = \{\psi_0, \dots, \psi_N, 0, \dots\}$$

It satisfies, for $f,g\perp\phi_0$,

$$Ua^{\dagger}(f)a(g)U^{\dagger} = a^{\dagger}(f)a(g)$$
$$Ua^{\dagger}(\varphi_{0})a(g)U^{\dagger} = \sqrt{N - \mathbb{N}_{\perp}}a(g)$$
$$Ua^{\dagger}(\varphi_{0})a(\varphi_{0})U^{\dagger} = N - \mathbb{N}_{\perp}$$

2. Show that $U(H_N - NE^H)U^{\dagger}$ is well approximated by the Bogoliubov Hamiltonian H^{Bog} , i.e, terms of higher order than quadratic are negligible compared to the main terms, at least at low energy.

CONCLUSIONS

- Rigorous bounds on the excitation spectrum of an interacting Bose gas, in a suitable limit of weak, long-range interactions.
- Extensions to dilute gases with short-range interactions are possible (but are much more complicated).
- With the notable exception of exactly solvable models in one dimension, these are the only models where rigorous results on the excitation spectrum are available.
- Verification of Bogoliubov's prediction that the spectrum consists of elementary excitations, with energy that is linear in the momentum for small momentum. In particular, Landau's criterion for superfluidity is verified.
- For the future: thermodynamic limit, relation to superfluidity, fermionic systems

. . .