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Frohlich Hamiltonian: we consider

_ dk
Haz—A®1+1®/dka;;ak+\/a/

k|
acting on Hilbert space H = L2(R3) @ F.

[e—zk-x R a}l; 1 ezkz-zc ® ay,

Here
F= P L?(R3; dk)®"
n>0
IS bosonic Fock space, with canonical commutation relations
[ak,a}:/} — 5(]<3 — k‘/), [ak,ak/} = [aZ,CLZ/] =0

Remark: H, bounded below, because [Lieb-Yamazaki, 58]:

£ [a(e™™ ) + a* (e )] < —6a + a5 1171V + 1)

with number of phonon operator
N = /dka,ﬂ;ak



Strong coupling units: introducing new variables

T — ax, k— k/a, ar — vVaagk,
we find Hy, = o?H,, with

dk

Ha:—A®1—|—1®/dka,’;ak—l—/m

=-AR14+1N 4+ ¢(Gz)

[e—zk-az Q a;’; + ezk:-:n ® ay,

where we denote G, (k) = |k|"le ** and

#(Gz) = a*(Ga) + a(Gx) = [ dk [Gu(k) @ af + Galk) @ ]

New creation and annihilation operators satisfy rescaled CCR

1
agsajl = 56 =K, lagsap] = laf,a)] = O

Strong coupling limit o« — oo is classical limit for phonon field.
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Weyl operators: for ¢ € L2(R3,dk), let

W(p) = exp(a*(¢) - ale)) = exp | [ dk (p(k)af, — p(k)ax

Then

W*(p)arW (¢) = ap+a 2p(k), W*(p)aiW (¢) = aj+a %p(k)

Coherent states: let 2 = {1,0,0,...} denote vacuum in F.
For ¢ € L2(R3), the coherent state

W (o) = exp (ozza*(go) — aza(go)) Q

2 \®j
— —o2lel3/2 {mz@,...,(“ ®) }

V!

IS eigenvector of all annihilation operators, with

apW (29)Q = o(k)W (a?p)Q



Ground state energy: consider product trial states
W =1 W(a2p)D
We find

(W, How) = [ da |w<x>|2 + [ dklp(R)2
+ [ 1 [0 e + W, ) o)

Completing the square, we obtain

(W, HoW) = gpekar(w) + /dk ‘@(k) + % ||¢

with Pekar functional

|z — y

[Donsker-Varadhan, 83] and [Lieb-Thomas, 97] showed that

YeL2(R3): [ 2=1
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Dynamics: it is natural to ask whether
e Mol [y @ W(0?0)Q] = @ W(ap)Q 7
We have

0y [wt ® W(OéQSOt)Q} = (10¢h1) @ W (a2pt)Q + 1 @ W (a2 pt)a* (10 Bppt) Q2
and

Hg, [¢t ® W(Oézsﬁt)Q]
= (—AY) ® W(aQ%)Q + Y ® W(OéQSOt)a*(SOt)Q
+2Re / e R e W09 + [ TG

With
dk

|k| —zk xw ®W(Oé th)akQ s /|k| ¢tae_ik.x¢t>¢t®w(a2¢t)a;:9

we obtain Landau-Pekar equations

{iatmm) = |-2 +2Re [] Tpu(@)| ¥1(a)
i020i01(k) = i (k) + k|~ 1| 2(k)



Some rigorous results:

[Frank-S., 14], [Frank-Zhou, 17]: convergence for |t| < «, ie.
lem ot (yp @ W (a2p)2) — ¥r @ W (eS| < Clt|/a

[Griesemer, 17]: considered data ¥g® W (a2p)2 with (o, ©0)
minimizing Pekar energy. He proved

lem e (1o ® W(a®p0)2) — 1o ® W(a®p0)Q| < Clt]/a

[Leopold-Rademacher-S.-Seiringer, 19]: let ¢ € L2(R3,dk)
such that

—_—

has ground state energy e(yp) < 0 with eigenvector ¢,. Then

e et (1o @ W (a?9)Q2) — vt @ W (a?p)| < Clt] /0

where (i, p¢) solves Landau-Pekar with initial data (v, ¢).
7



Adiabatic theorem: let ¢ € L?(R3,dk) so that e(p) < 0. Let
(¢, pr) be solution of Landau-Pekar with data (i,,¢). Then
[Leopold-Rademacher-S.-Seiringer, 19]

It — w2 < Ca™2
for all |t| < Ca?.

An adiabatic theorem for one-dimensional version of Landau-
Pekar was also proved by [Frank-Zhou, 19].
Bogoliubov dynamics: consider evolution S(t;s) defined by

i0:S(t; s) = (N — A4)S(&; s), with S(s;s) =1
and
= (Y, (Gx)Rt¢(Gx)¢¢t>L2(R3)

dk dk’ ik .
N / k| |K| (thip €™ Ree™ Tibiy) 2(r3y (af + a—p) (aZpy + ap)

with R; = qt(h% — e(gat))_lqt and ¢t =1 — |¢90t><¢90t|-



Main theorem: let g € L2(R3) with e(pg) < 0. Then
e ot (g ® W(aP00)Q) — ¢ ® W(a?0)S (£ 0)Q < Ca™?

for all |t| < Ca?Z.

Remark: restriction to |t| < Ca? ensures persistence of gap

A(t) =inf {|]X—e(p)| > 0: A€ oa(hy)\{e(er)}}

Corollary: define electron reduced density matrix
vE = Tre e el (Yu @ W(ae0)Q)) (e o (Y @ W (aep))]
Then
Ive' — [e) (Wl ller < Ca for all [t| < Ca”

Assuming additionally that g € L2(R3, |k|1/2dk), we also find
[4P" = lei el < CaM4, forall [t] < Ca?
where
ey _iH, iH.
vo (kK = (e Wi t(@b@O@W(aQ@O)Q),aZ,ake H t(wng@W(azgoo)Q))
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Remark: corollary shows validity of Landau-Pekar equations for
t ~ a2, at level of reduced densities.

Bogoliubov dynamics captures quantum fluctuations around
classical Landau-Pekar equations.

It is crucial to establish a norm-approximation.

In fact, for § > 0 small, there is Cs > 0 such that, for t = a2,

le™ ot (0 @ W (aP0)2) — (¥ @ W (ap)Q)|| > C5,  for all a
for all « large.

Remark: also for ground state energy, Bogoliubov theory is
expected to describe corrections to classical Pekar energy.

For polarons on bounded domains, this was recently proved by
[Frank-Seiringer, 19].

Remark: for data (vg, o) minimizing Pekar energy, result was
previously obtained by [Mitrouskas, 20].
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Fluctuation dynamics: observe that

[e™ et (Yo @ W (aP00)S2) — v @ W (a2r)S(t;0)
= [9(8) - U(t;0) © S(t; 0)] (o @ Q)|
where

10Ut s) = hy, U(E; s), U(s;s) =1
and
G(t) = W*(a”p)e Mot W (a”pp)

Generators: we have

10 [U®;0) ® S(t;0)] = (hyg, + N — Ap) [U(£;0) ® S(¢; 0)]

On the other hand,

101G (t) = L1G(t)
with generator

Ly = [i0W* (0P o) | W (a®pt) + W (o) HaW (aspr)
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Computation of £;: we have
W*(a?pr) Ha W (cupy)
= -A+ / (af, + 21(k)) (g + e (k) dk

- / & e (af + (k) + €7 (ay, + (k)|
= — A+ N4 ¢(er) + 2Re [[Lo(x) + 6(Ca)

and

[ié’tW*(ath)] W (a2er) = —¢(ia2dpr) = —d(r) — d(|wel2/].])

Thus

Lt = hsot + N + Qb((StG:L’)
with

— dk . :
3(8:Gx) = d(Ga)—=¢(|9el?/|1) = | == [e7™F — (v, e FTay)] aj+h.c.

K|
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Sketch of proof: we have
e ot (g0 © W (0%00) Q) — 1 © W (a2p)S(t; 0)9|
= [[G(t) — U(t; 0) @ S(t; 0)] (thyy ® )12

= 2Im /Ot ds (G(s) (Yo ® ), [¢(6:sGz) — As]
X(U(s;0) ® S(s,0)) (P ® 2))

With adiabatic theorem
g 2
e ot (1o @ W (0P00)R2) — ¥t @ W (a?e)S(t;0)Q|

~ 21m [ ds (G(5) (o © D, [6(5:C) — As] (Y, © S(5;0))
=: 1411
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Consider term

= 2Im /O " 45(G(5) (g @ ), $(85Ca) (Y ® S(s: 0)2))

Since ps¢(dsGz)ps = 0, we arrive at

m [ ds(G(5) (b0 ® ), a56(G) (Wi, ® S(53 0))

Now, write

—U(s;0) [i0sU™(s;0)] = hp, — e(ps)

We obtain

= —2Re /Ot ds(U* (5: 0)G() (g @ ), [Bsld* (5; 0)]
X Rsp(Gr) (s @ S(s;0)$2))

with resolvent Rs = qs(ho, — e(ps))  1qgs.
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To bound

I— _2Re /Otds<u*(s;0)g(s)(¢%®sz), O (s: 0)]

X Rs(Ga) (Y, ® S(s;0)K2))
we integrate by parts:

[~ 2Re /Ot ds(U*(5: 0) (N + ¢(6sG2))G(8) (g ® ),
x U*(s; 0)Rsp(Gz) (s ® S(s;0)€2))
t
~ 2 Re /O ds(G(s) (Yo @ 2), p(0sGz) Rsp(Gz) (Y, @ S(s;0)82))

Inserting ps + gs = 1, we conclude that
t
[~ 2Re [ ds(G(s)(Yiag © ), psd(Ga) Rs(Ga) (0, ® S(5; 0))

+2Rre [ ' 45(0(5) (g @ ), 4s(85C) Rsd(Ga) (i, @ S(s: 0)2))

First term cancels precisely with term II! For second term, we
repeat procedure integrating by parts once again.
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Conclusions:

e In strong coupling regime a — oo, quantized phonon field
approaches classical limit.

e To leading order, the energy determined by Pekar functional,
dynamics by the Landau-Pekar equations.

e Next order corrections depend on quantum fluctuations, de-
scribed by Bogoliubov theory.
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e Many similarities with mean field bosons, with

Hy = /Va;a; Vaz + %/dmdy‘/(a: — y)a;a?jayax
Setting by, = N—1/2q,, we find
%’H N = / Vb Vb + % / dudyV (z — y)biblbby
where by, by satisfy rescaled CCR
[bx,b;j — %5(33 — ), [bm,by] — [b;;,b;j] =0
As N — oo, energy approaches classical Hartree functional

Enartree() = [ 19612 + - [ dedyV (z — )lip(@) Plo(v)

Fluctuations around Hartree are described by Bogoliubov theory.

For dynamics, this approach goes back to [Hepp, 74].

17



