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1 Trotter’s product formula

We will now show Trotter’s product formula, following the proof of [Simon, 1979].

Theorem 1 (Trotter’s product formula). Let H be a Hilbert space. Assume A, B self-adjoint
on H, and that A+ B with domain D(A) N D(B) is also self-adjoint. Then the following holds

exp(it(A + B)) = s-limy, oo (exp(itA/n) exp(itB/n))" (1)
Proof. We define the one-parameter unitary groups

Sy = exp(it(A+ B)), Vi = exp(itA) (2)
Ut = exp(itB), Wt = ‘/tUt (3)

and for all £ € H define & = Si£. We start by noting that we have the equality
—j—1
;L/n - tr}n Z t/n St/n - Wt/n)S;L/n

since we recognize the right hand side as simply a telescoping expansion of the left hand side.

Now we may write

(st — Wit e|| = Swg'/nwt/n—wt/n)sg;j‘l& ng(st/n—Wt/n S|«
=0 =0
<mn sup H St/n Wt/n)gsu (5)
0<s<t

Sss—l = i(A + B) here. We

Now consider vectors lying in D(A) N D(B).
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also wish to calculate the derivative of Wy as we just did for S

W, — 1 V,U, — 1
*— ¢ = ViiBp — ViiBo + ————¢

Us—1 Vs—1

:VSiBgo—i-V;< —iB>g0+ ®
We see that this expression tends to iBy + iBy — iByp + iAp = iBp + iAp as s — 0. As
So = Wp =1 this gives us

nh—>Holo Hn(S’t/n - Wt/n)H = lim

n—oo

e S

everywhere in D(A) N D(B). Since A + B is self-adjoint it is closed, therefore D(A) N D(B)
becomes a Banach space when equipped with the graph norm. We have just shown that n(S; /n—
Wi n) are bounded for every n, with sup,en{|[n(Sy/n — Wijn)ell} < oo. Then the uniform
boundedness principle gives us that n(S;/,, =W, y,) is uniformly bounded as |[1(Sy /5, = Wy, ) 0| | <
C'||¢||, viewed as an operator from D(A)N D(B) equipped with the graph norm to H equipped
with the usual norm. This gives us that the convergence in Equation (6) is uniform on compact
subsets of R. We note that the mapping f 1 s — & is continuous, therefore the image of a
compact set is compact, in particular the image of the interval [0,¢], which together with our

previous results imply that as n — oo Equation (5) goes to zero, which shows the theorem.
O

Another essential result relating the product of the exponentials with the exponential of the

sum is the Baker Campbell Hausdorff formula. We start with a minor lemma

Lemma 2. Let X be a Banach space and consider L(X). Let A,B € L(X) satisfy that
[A,[A, B]] = [B,[A,B]] =0. Then exp(tB)Aexp(—tB) = A —t[A, B].

Proof. Consider the Taylor expansion of f(t) = exp(tB)Aexp(—tB).

f'(t) = exp(tB)BA exp(—tB) + exp(tB)(—AB) exp(—tB)
= exp(tB)[B, A] exp(—tB)
= —[A, B]

Thus we have f(t) = f(0) +tf'(t) = A — t[A, B], as desired. O

We can use this lemma to prove the Baker-Campbell-Hausdorff formula.
Lemma 3. For A,B € L(X) where X is a Banach space, and [A,[A, B]] = [B,[A, B]] =0 we
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have the formula

exp(A) exp(B) = exp <;[A, B]> exp(A + B)

Proof. We see that the formula we wish to derive is equivalent to
1
exp(A) exp(B) exp( (4 + B) = exp (5[4,

Defining the function f(t) = exp(tA)exp(tB)exp(—t(A + B)) we need merely check that its
derivative is t[A, B f(t), as this will imply that f(t) = exp (3¢*[A, B]), by uniqueness of solutions
of ODE’s.

It ) = exp(tA)[Aexp(tB) exp(—t{A + B})

exp(tB)Bexp(—t{A + B}) + exp(tB)(—{A + B}) exp(—t{A + B})]
exp(tA) [A,exp(tB)] exp(—t(A + B))]
= exp(tA)(A — exp(tB)Aexp(—tB)) exp(tB) exp(—t(A + B))
exp(tA)(A — (A —t[A, B])) exp(—tB) exp(—t(A + B))
— 1[4, Bl (1)

Thus we have that f(t) = exp (5t*[A, B]), and evaulating in ¢ = 1 gives us the desired result. [
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