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1 Trotter’s product formula

We will now show Trotter’s product formula, following the proof of [Simon, 1979].

Theorem 1 (Trotter’s product formula). Let H be a Hilbert space. Assume A,B self-adjoint

on H, and that A+B with domain D(A) ∩D(B) is also self-adjoint. Then the following holds

exp(it(A+B)) = s-limn→∞(exp(itA/n) exp(itB/n))n (1)

Proof. We define the one-parameter unitary groups

St = exp(it(A+B)), Vt = exp(itA) (2)

Ut = exp(itB), Wt = VtUt (3)

and for all ξ ∈ H define ξt = Stξ. We start by noting that we have the equality

Sn
t/n −W

n
t/n =

n−1∑
j=0

W j
t/n(St/n −Wt/n)Sn−j−1

t/n

since we recognize the right hand side as simply a telescoping expansion of the left hand side.

Now we may write

∣∣∣∣∣∣(Sn
t/n −W

n
t/n)ξ

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∣∣∣∣∣∣
n−1∑
j=0

W j
t/n(St/n −Wt/n)Sn−j−1

t/n ξ

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤

n−1∑
j=0

∣∣∣∣∣∣(St/n −Wt/n)Sn−j−1
t/n ξ

∣∣∣∣∣∣ (4)

≤ n sup
0≤s≤t

∣∣∣∣(St/n −Wt/n)ξs
∣∣∣∣ (5)

Now consider vectors lying in D(A) ∩D(B). We have that lims→0
Ss−1

s = i(A + B) here. We
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also wish to calculate the derivative of Ws as we just did for Ss

Ws − 1

s
ϕ = VsiBϕ− VsiBϕ+

VsUs − 1

s
ϕ

= VsiBϕ+ Vs

(
Us − 1

s
− iB

)
ϕ+

Vs − 1

s
ϕ

We see that this expression tends to iBϕ + iBϕ − iBϕ + iAϕ = iBϕ + iAϕ as s → 0. As

S0 = W0 = 1 this gives us

lim
n→∞

∣∣∣∣n(St/n −Wt/n)
∣∣∣∣ = lim

n→∞

∣∣∣∣∣∣∣∣(St/n − 1)− (Wt/n − 1)

1/n

∣∣∣∣∣∣∣∣ = 0 (6)

everywhere in D(A) ∩ D(B). Since A + B is self-adjoint it is closed, therefore D(A) ∩ D(B)

becomes a Banach space when equipped with the graph norm. We have just shown that n(St/n−
Wt/n) are bounded for every n, with supn∈N{||n(St/n − Wt/n)ϕ||} < ∞. Then the uniform

boundedness principle gives us that n(St/n−Wt/n) is uniformly bounded as ||n(St/n−Wt/n)ϕ|| ≤
C ||ϕ||, viewed as an operator from D(A)∩D(B) equipped with the graph norm to H equipped

with the usual norm. This gives us that the convergence in Equation (6) is uniform on compact

subsets of R. We note that the mapping ξ̂ : s 7→ ξs is continuous, therefore the image of a

compact set is compact, in particular the image of the interval [0, t], which together with our

previous results imply that as n→∞ Equation (5) goes to zero, which shows the theorem.

Another essential result relating the product of the exponentials with the exponential of the

sum is the Baker Campbell Hausdorff formula. We start with a minor lemma

Lemma 2. Let X be a Banach space and consider L(X). Let A,B ∈ L(X) satisfy that

[A, [A,B]] = [B, [A,B]] = 0. Then exp(tB)A exp(−tB) = A− t[A,B].

Proof. Consider the Taylor expansion of f(t) = exp(tB)A exp(−tB).

f ′(t) = exp(tB)BA exp(−tB) + exp(tB)(−AB) exp(−tB)

= exp(tB)[B,A] exp(−tB)

= −[A,B]

Thus we have f(t) = f(0) + tf ′(t) = A− t[A,B], as desired.

We can use this lemma to prove the Baker-Campbell-Hausdorff formula.

Lemma 3. For A,B ∈ L(X) where X is a Banach space, and [A, [A,B]] = [B, [A,B]] = 0 we
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have the formula

exp(A) exp(B) = exp

(
1

2
[A,B]

)
exp(A+B)

Proof. We see that the formula we wish to derive is equivalent to

exp(A) exp(B) exp(−(A+B)) = exp

(
1

2
[A,B]

)
Defining the function f(t) = exp(tA) exp(tB) exp(−t(A + B)) we need merely check that its

derivative is t[A,B]f(t), as this will imply that f(t) = exp
(
1
2 t

2[A,B]
)
, by uniqueness of solutions

of ODE’s.

f ′(t) = exp(tA)[A exp(tB) exp(−t{A+B})

+ exp(tB)B exp(−t{A+B}) + exp(tB)(−{A+B}) exp(−t{A+B})]

= exp(tA)[A, exp(tB)] exp(−t(A+B))]

= exp(tA)(A− exp(tB)A exp(−tB)) exp(tB) exp(−t(A+B))

= exp(tA)(A− (A− t[A,B])) exp(−tB) exp(−t(A+B))

= t[A,B]f(t)

Thus we have that f(t) = exp
(
1
2 t

2[A,B]
)
, and evaulating in t = 1 gives us the desired result.
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