
SPECTRAL ANALYSIS OF (SOME) SCHRÖDINGER

OPERATORS II

1. Introduction

We continue our study of (some) Schrödinger operators−∆+V on L2(Rd).
We aim to show two results:

(1) if V is in the Rollnik class, then the number of bound states is finite,
(2) under suitable assumptions on V , −∆ + V has no positive eigenval-

ues1.

For each result we introduce an appropriate tool. For the first one, we will
use the Birman-Schwinger principle, and for the latter we will use the virial
theorem.

The Birman-Schwinger principle can also be used to derive Lieb-Thirring
inequalities (see assignment). We will use it to prove also that in dimension
1 and 2, the Schrödinger operator −∆ + V has a bound state as long as
V ≤ 0 is non-trivial. Sobolev inequalities ensure us that this result is false
in higher dimensions.

We also emphasize that regarding the second problem, much more is
known about the absence of embedded (in the essential spectrum) eigenval-
ues: we refer the reader for instance to [2][Thm XIII.58] and [1] where it can
be found geenric conditions on V for the absence of positive eigenavlues.
Note that there exist potentials that give rise to positive eigenvalues2 In
dimension d ≥ 5, we exhibit an example of a Schrödinger operator with
non-trivial kernel.

The virial method is a particular case of a more general technique that
you can find in the litterature called Mourre-estimate technique.

2. Bound on the number of bound states

2.1. The Birman-Schwinger principle. It relates eigenfunctions of−∆+
V with negative eigenvalues E = −a2 < 0 with eigenfunctions of a compact
operator, in the case when V is non-positive: V ≤ 0.

Lemma 1 (Birman-Schwinger principle). Let V ≤ 0 be a measurable poten-

tial such that the multiplication operator ψ 7→ |V |1/2ψ is bounded.
Then E = −a2 < 0 is an eigenvalue of −∆ + V if and only if 1 is an

eigenvalue of

Ka := |V |1/2(−∆ + a2)−1|V |1/2. (1)

and if this is the case, they have the same multiplicity.

1that is in (0,+∞). Ruling out the possibility of a non-trivial kernel is another problem.
2they are called Neumann-Wigner potentials, as they were the first to exhibit an ex-

ample of such potentials [4][pp. 291-293].
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Remark 2. We might be able to relax the constraint |V |1/2 bounded, but it
has to be checked each time.

Furthermore, if V is bounded, we can relax the condition V ≤ 0 up to
replacing Ka by

|V |1/2(−∆ + a2)−1|V |1/2sign(V ).

Proof. Take an eigenfunction ψ ∈ dom(−∆ + V ) = H2(Rd): (−∆ + V )ψ =
Eψ. Rewriting the eigenequation, we have:

(−∆ + a2)ψ = −V ψ = |V |ψ.

Applying the resolvent (−∆ + a2)−1 and afterwards |V |1/2, we obtain:

|V |1/2ψ =
[
|V |1/2(−∆ + a2)−1|V |1/2

]
|V |1/2ψ,

hence 1 is an eigenvalue of Ka. Conversely, if φ satisfies Kaφ = φ, then
setting ψ := (−∆ + a2)−1|V |1/2φ, there holds:

(−∆ + a2 + V )ψ = |V |1/2φ− |V |1/2
[
|V |1/2(−∆ + a2)−1|V |1/2

]
φ = 0.

Hence E = −a2 is an eigenvalue of −∆ + V . The multiplicity are the same
as:

ψ 7→ (−∆ + a2)−1|V |1/2|V |1/2ψ
is the identity on the eigenspace ker(−∆ + V + a2), and

φ 7→ |V |1/2(−∆ + a2)−1|V |1/2φ

is the identity on ker(Ka − 1). �

2.2. The Birman-Schwinger bound.

Theorem 3. On R3, let V ∈ R, and let V = V+ − V− be its splitting into
positive and negative parts:

V± = max(±V, 0).

Let N(V ) be the number of negative eigenvalues of −∆ + V (counted with
multiplicities). Then N(V ) is finite and there holds:

N(V ) ≤ 1

(4π)2

∫∫
R3×R3

V−(x)V−(y)

|x− y|2
dxdy.

Proof. First recall that V is −∆-compact, hence σess(−∆ + V ) = [0,+∞).
Restriction to V = −V−. The following quadratic form inequality holds:
−∆ + V ≥ −∆ − V− as V ≥ −V−. So by the min-max principle, we have
for all n ≥ 1

µn(−∆− V−) ≤ µn(−∆ + V ),

and so N(V ) ≤ N(−V−). More generally, writing NE(V ) the number of
eigenvalues (counted with multiplicities) of −∆ + V strictly smaller than
E < 0, we have: NE(V ) ≤ NE(−V−). So w.l.o.g. we can assume that
V = −V− ≤ 0.
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Restriction to V− ∈ C∞0 (R3). Consider a compactly supported mollifier
(φε)ε>0, that is φε(x) = ε−3φ1(x/ε) where φ1 ∈ C∞0 (R3, [0, 1]) with

∫
φ1 = 1.

Then (V− ∗ φε)ε>0 is a family3 in C∞0 (R3) which converges to V− as ε
tends to 0 (in R and in L1

loc(R3)).

We emphasize that R ⊂ L1
loc(R3) as we have:∫∫

|V (x)||V (y)|
|x− y|2

dxdy ≥
∫
x
|V (x)|

∫
y:|x−y|≤1

|V (y)|
|x− y|2

dydx,

≥
∫
x
|V (x)|

∫
y:|x−y|≤1

|V (y)|dydx.

By definition of the µn’s, for all n ≥ 1 we have:

lim
ε→0+

µn(−V− ∗ φε) = µn(−V−).

Hence for all n ∈ N and all E < 0, there exists ε0 > 0 such that for 0 < ε < ε0
we have:

NE(−V−) ≤ NE(−V− ∗ φε)

and

N(−V−) ≤ lim inf
ε→0+

N(−V− ∗ φε).

So w.l.o.g. we can assume that V = −V− is smooth and compactly sup-
ported.

Application of the Birman-Schwinger principle. For λ ≥ 0, let µn(λ) :=
µn(−∆ + λV ).

As V ≤ 0 is −∆-compact, the function λ ≥ 0 7→ µn(λ) is monotone
decreasing.

Looking at the definition of the µn’s, we easily see that µn(λ) is also a
continuous function in λ.

We have µn(0) = 0. So if µn(1) < E, then by continuity, there exists
0 < λ < 1 such that µn(λ) = E (necessarily unique4).

By the Birman-Schwinger principle, we have µn(λ) = E if and only if 1

is an eigenvalue of (λ|V |)1/2(−∆−E)−1(λ|V |)1/2, that is if and only if 1/λ
is an eigenvalue of

Ka := |V |1/2(−∆ + a2)|V |1/2 ≥ 0, a2 = −E > 0.

3see any book on distributions.
4why?
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As 1/λ > 1, we get:

NE(V ) = Card
{
n, µn(1) < E

}
,

= Card
{
n, ∃ 0 < λ < 1, µn(λ) = E

}
,

=
∑

µ>1, eig. of Ka

1,

≤
∑

µ>1, eig. of Ka

µ2,

≤
∑

µ eig. of Ka

µ2 =

∫∫
|Ka(x, y)|2dxdy,

where the sum over the eigenvalues of Ka takes into account their multiplic-
ities. A computation yields:∫∫
|Ka(x, y)|2dxdy =

1

(4π)2

∫∫
|V (x)|e

−2a|x−y|

|x− y|2
|V (y)|dxdy −→

a→0+

1

(4π)2
‖V ‖2R.

Thus we get:

N(V ) = lim
E→0−

NE(V ) ≤ 1

(4π)2

∫∫
|V (x)||V (y)|
|x− y|2

dxdy.

�

2.3. Existence of bound states in lower dimension.

Lemma 4. In dimension d = 1 or d = 2, let V ∈ C∞0 (Rd) such that V ≤ 0.
Then for all λ > 0, −∆ + λV ha a negative eigenvalues.

Proof. By the Birman-Schwinger principle, it suffices to show that for any
λ > 0, there exists ε > 0 such that Kε = |V |1/2(−∆ + ε2)|V |1/2 has an
eigenvalue 1/λ0 ≥ 1/λ. Indeed, this implies that −ε2 is an eigenvalue of
−∆ + λ0V , and we conclude by the min-max principle.

As Kε is compact5, it suffices to show that limε→0+‖Kε‖L = +∞ (the
norm is the largest eigenvalue of Kε ≥ 0).

Take η ∈ C∞0 (Rd, [0,+∞)) with |V |1/2η 6= 0. Writing φ = |V |1/2η, we
have:

〈η,Kεη〉 = 〈φ, (−∆ + ε2)−1φ〉,

=

∫
|φ̂(p)|2

|p|2 + ε2
dp −→

ε→0+

∫
|φ̂(p)|2

|p|2
dp = +∞.

The convergence holds by monotone convergence, and the latter integral is
infinite as φ ∈ L1(Rd), hence φ̂ ∈ C0

0 (Rd) and φ̂(0) = (2π)d/2
∫
φ > 0. The

argument uses the fact that |p|−2 is not locally integrable around 0. �

Remark 5. We emphasize that the result is flase in dimension d ≥ 3.
Indeed, by Sobolev inequality, there holds:∫
|V ||ψ|2 ≤

(∫
|V |d/2

)2/d(∫
|ψ|2d/(d−2)

)(d−2)/d
≤ C‖V ‖Ld/2(Rd)‖∇ψ‖

2
L2(Rd).

5it is of the form f(x)g(−i∇)2f(x) where f, g ∈ L∞(Rd) both tend to 0 at infinity.
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3. The virial theorem

3.1. The S.C.G.U. of dilations. Let a > 0. The dilation operator Ua is
the unitary operator defined by

∀ψ ∈ L2(Rd), (Uaψ)(x) := ad/2ψ(ax).

It is not difficult to see that U∗a = Ua−1 . Via the logarithm log : (0,+∞)→
R, we obtain a S.C.G.U. (Uet)t∈R. That it is strongly continuous is easy
to establish using the density (in L2(Rd)) of the set Cc(Rd) of continuous
functions with compact support.

By Stone theorem, it is associated to a unique self-adjoint operator, which
is given by:

D =
id

2
+ i

d∑
j=1

xj∂xj =
1

2

{
x, i∇

}
,

where e−iD log(a) = Ua.

3.2. Statement. Let V be a (real)-potential: a computation yileds:

(UaV U
∗
a ) =: Va, (Vaψ)(x) = V (ax)ψ(x).

Similarly we have:

(Ua∆U
∗
a ) = a−2∆.

Furthermore, for V regular enough we have:

Va(x)− V (x)

a− 1
−→
a→1
a6=1

x · ∇V (x) =: W (x).

Furthermore for a potential V , and H = −∆ + V , there formally holds
i[D,H] = 2(−∆)−W . Hence, if ψ is an eigenfunction of H: Hψ = Eψ, we
formally have:

2〈ψ,−∆ψ〉 − 〈ψ,Wψ〉 = 〈ψ, i[D,H]ψ〉,
= 0.

This result constitutes the virial theorem, which we have to justify rigor-
ously.

Theorem 6 (The Virial theorem). Let V a real-valued function seen as a
multiplication operator on L2(Rd) such that:

(1) it is −∆-bounded with relative bound (strictly) smaller than 1.
(2) there exists a multiplication operator W on L2(Rd) with dom(W ) ⊃

dom(−∆) such that for all ψ ∈ dom(−∆), there holds:

lim
a→1
a6=1

Vaψ − V ψ
a− 1

= Wψ ∈ L2(Rd).

Then if ψ ∈ dom(−∆) is an eigenfunction of H with eigenvalue E then:

2〈ψ,−∆ψ〉 = 〈ψ,Wψ〉 = 2〈ψ, (E − V )ψ〉 ≥ 0. (2)



6 SPECTRAL ANALYSIS OF (SOME) SCHRÖDINGER OPERATORS II

Proof. We emphasize that the first equation is used to argue by the Kato-
Rellich theorem that −∆ + V (and −∆ + Va for a close enough to 1) is
self-adjoint with domain dom(−∆).

Conjugating the eigen-equation with Ua, and writing ψa = Uaψ we obtain:

(−∆ + a2Va)ψa = Ea2ψa,

(−∆ + V ) = Eψ.

Taking the inner product with ψ in the first line and with ψa in the second,
we get:

〈(−∆ + a2Va)ψa, ψ〉 = Ea2〈ψa, ψ〉,
〈ψa, (−∆ + V )〉 = E〈ψa, ψ〉.

Hence we have:

E(a2 − 1)〈ψa, ψ〉 = 〈(−∆ + a2)ψa, ψ〉 − 〈ψa, (−∆ + V )ψ〉,
= 〈(a2Va − V )ψa, ψ〉.

Dividing by a− 1 we obtain

E(a+ 1)〈ψa, ψ〉 = (a+ 1)〈ψa, Vaψ〉+
1

a− 1
〈ψa, (Va − V )ψ〉,

and taking the limit a→ 1, a 6= 1 gives6

2E〈ψ,ψ〉 = 2〈ψ, V ψ〉+ 〈ψ,Wψ〉.
As (−∆ + V )ψ = Eψ, it ends the proof. �

Remark 7. Typically we can establish the second condition of Thm 6 as
follows. Assume that the convergence:

Va(x)− V (x)

a− 1
→W (x)

holds almost everywhere, and that there exists W̃ with dom(W̃ ) ⊃ dom(−∆)
such that: ∣∣∣Va(x)− V (x)

a− 1

∣∣∣ ≤ W̃ (x).

Then we get: dom(W ) ⊃ dom(W̃ ) ⊃ dom(−∆), and the second condition
follows by dominated convergence.

3.3. Absence of positive eigenvalues. We now show how we can use the
virial theorem to ensure the absence of positive eigenvalues.

Theorem 8. Let V be a real-valued function which is −∆-bounded with
relative bound (strictly) smaller than 1. Then H = −∆ + V has no positive
eigenvalues if any of the following three conditions hold.

(1) V satisfies the conditions of Thm 6 and V is repulsive in the sense
that7:

∀x ∈ R3 & a > 1, V (ax) ≤ V (x).

(2) In dimension d ≥ 3, V is homogoneous of degree −α with 0 < α < 2:

V (ax) = a−αV (x), x 6= 0.

6as an exercise, justify the limit: what kind of convergence do we have for each function?
7formally W (x) ≤ 0. Recall that a potential V gives rise to a force field −∇V .
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(3) V satisfies the conditions of Thm 6 and for some b > 0, we have the
quadratic form inequality:

−∆− 1

2
(1 + b)W − bV ≥ 0.

Proof. If (ii) holds, let us show that the result of Thm 6 still holds. First,
by Hardy’s inequality, we know that we can apply the KLMN theorem to
define −∆+V and −∆+Va for a close to 1. Then observe that for all x 6= 0
there holds:

V (ax)− V (x)

a− 1
=
a−α − 1

a− 1
V (x) −→

a→1
a6=1

−αV (x).

It suffices to follow step by step the proof of Thm 6. In particular we have
the convergence:

(a+ 1)〈ψa, Vaψ〉+
1

a− 1
〈ψa, (Va − V )ψ〉 −→

a→1
a6=1

2〈ψ, V ψ〉+ 〈ψ,Wψ〉,

where we have used the fact that ‖ψa − ψ‖H1 → 0 for ψ ∈ H1(Rd).
In any of the three cases, by the Virial theorem, for an eigenfunction ψ

of H, we have:

〈ψ,−∆ψ〉 =
1

2
〈ψ,Wψ〉.

If (i) holds: then W ≤ 0 as an operator and ψ ∈ ker(−∆) = {0}, which
is absurd. So −∆ + V has no eigenvalues.

If (ii) holds, then W = −αV , and we have:

2E〈ψ,ψ〉 = 2〈ψ, (−∆ + V )ψ〉,
= (2− α)〈ψ, V ψ〉,
= −α−1(2− α)〈ψ,Wψ〉,
= −2α−1(2− α)〈ψ,−∆ψ〉 < 0.

If (iii) holds, then from the eigen-equation we obtain:

−Eb〈ψ,ψ〉 = −b〈ψ, (−∆ + V )ψ〉+ 0,

= −b〈ψ, (−∆ + V )ψ〉+ (1 + b)〈ψ, (−∆− 1
2W )ψ〉,

= 〈ψ, (−∆− 1
2(1 +W )− bV )ψ〉 ≥ 0,

hence E ≤ 0. �

3.4. Examples.
Atomic Hamiltonian. The main example is the atomic Schrödinger operator
given by:

HZ
N :=

N∑
j=1

−∆xj −
Z

|xj |
+

∑
1≤i<j≤N

1

|xi − xj |
,

where N ∈ N is the number of particles and Z > 0 is the total charge of the
core at 0. The operator HZ

N acts on H2(R3N ) and above xj ∈ R3.
It is of the form −∆ + V where V is homogoneous of degree −1, hence it

has no positive eigenvalues.
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Small smooth potentials. Let V ∈ C∞0 (Rd) with d ≥ 3. Then we have that
W = −x · ∇V is also in C∞0 (Rd), hence for ε > 0 given there exists λ0 > 0
so that for −λ0 ≤ λ ≤ λ0 we have:

−∆− 1
2(1 + ε)λx · ∇V − λεV ≥ 0.

In particular this implies that −∆ + λV has no positive eigenvalues.

Existence of a non-trivial kernel in dimension d ≥ 5. Let us show that in
dimension d ≥ 5 there exist a,R > 0 such that −∆ − aχB(0,R) has a non-
trivial kernel. This corresponds to a suqare well in high dimension.

The eigen-equation is:{
−∆ψ = 0 on B(0, R)c,
−∆ψ = aψ on B(0, R).

If we look at radial solution, the equation on B(0, R)c gives8 ψ(x) = C|x|d−2
for |x| ≥ R. Up to normalizing we can assume C = 1.

The equation on B(0, R) gives −∆ψ = εψ, and to obtain an element on
H2(Rd) we must have ψ|S(0,R)

and ∂
∂nψ|S(0,R)

on both sides of the hyper-

sphere S(0, R) (where n is the outward normal: n(x) = x
|x| for x ∈ S(0, R)).

We look solutions on B(0, R) which are eigenfunctions of the Robin Lapla-
cian: {

−∆ψ = aψ on B(0, R),
∂
∂nψ = −αψ on S(0, R),

with α > 0 to be chosen. It is the unique self-adjoint operator corresponding
to the closed non-negative quadratic form on H1(B(0, R)):∫

B(0,R)
|∇ψ|2 + α

∫
S(0,R)

|ψ|S(0,R)
(y)|2dS(0,R)(y).

The eigenfunction9 φ1(|x|) ∈ H2(B(0, R)) corresponding to the lowest
eigenvalue λ1 is radial, and can be chosen positive. We choose a = λ1. The
condition across S(0, R) gives:

−αR−(d−2) = −α(φ1(x))|x|→R− ,

= ( ∂
∂nφ1(x))|x|→R− ,

= ( ∂
∂n | · |

−(d−2))|x|→R+ = −(d− 2)R−(d−1).

We thus choose α := d−2
R > 0, and we thus obtain a non-trivial element of

ker(−∆− λ1χB(0,R)).
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