
SPECTRAL ANALYSIS OF (SOME) SCHRÖDINGER

OPERATORS I

1. Introduction

We now turn to studying the spectrum of Schrödinger operators of the
form −∆ + V . For typical non-negative decaying potentials V (like the
Coulomb potential − 1

|·|) the spectrum of the Hamiltonian H := −∆+V can

be decomposed as follows.

(1) The essential spectrum of H is that of −∆: [0,+∞).
(2) There is a finite or infinite number of negative eigenvalues with fi-

nite multiplicity below the essential spectrum: the corresponding
eigenfunctions are called bound states.

(3) The bottom of the spectrum is a simple eigenvalue, the correspond-
ing normalized eigenfunction (fixed up to a phase) is called the grond
state.

(4) There is no positive eigenvalue.

The non-degeneracy of the ground state will be proved in a seminar, and
the absence of positive eigenvalues will be established for certain kind of
potentials later on1.

Here, we introduce basic results for the study of a semi-bounded operator
H: the min-max principle, and the Rayleigh-Ritz method. The first one
characterizes the first elements of the spectrum of such an operator H. The
second one is a technique to obtain upper bounds on these first eigenvalues.
Both are natural, if not “obvious”, yet very useful.

We will then give examples to illustrate the fact that the discrete spectrum
can be finite or infinite. The crucial criterion is the behaviour of the potential
V at infinity. Say V ≤ 0 to simplify: if V decays slowly at infinity, then
there exist smooth functions ψ with negative energy 〈ψ, (−∆ + V )ψ〉 and
arbitrarily far support.

The proof of the min-max principle is interesting as it plays with the
definition of the discrete and infinite spectrum in terms of the projection-
valued measure.

We emphasize that there exists another interesting regime: when the
potential V tends to +∞ as x tends to infinity. The best example is the
(important) case of the harmonic oscillator with V (x) = x2. In the fourth
assignment you are asked to prove that in that case, there is no essential
spectrum and that the discrete spectrum is made of eigenvalues λ1 ≤ λ2 ≤
. . . with λn → +∞.

In Physic textbooks, you can find a full description of the spectrum and
the eigenfunctions of the atomic Schrödinger operator −∆

2 −
Z
|x| and of the

1the key-notion to proving this result is: the virial theorem.
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harmonic oscillator −∆ + |x|2. Both cases involve orthogonal polynomials:
the Laguerre polynomials for the first one and the Hermite polynomials for
the second.

2. The min-max principle

Theorem 1. Let H be a semi-bounded s.a. operator. For n ≥ 1 let µn(H)
be:  µn(H) := sup

{
UH(φ1, . . . , φn−1), φ1, . . . , φn−1 ∈ H

}
,

UH(φ1, . . . , φn−1) := inf
{
〈ψ,Hψ〉, ψ ∈ dom(H), ‖ψ‖H = 1,

& ∀ 1 ≤ i ≤ n− 1, 〈φi, ψ〉 = 0
}
,

with the convention µ1(H) := inf{〈ψ,Hψ〉, ψ ∈ dom(H), ‖ψ‖H = 1}.
Then for each n ≥ 1 there holds either one or the other of these two

statements:

(1) There are n eigenvalues (counting multiplicity) below the bottom of
the essential spectrum, and µn(H) is the n-th smallest eigenvalue
(counting multiplicity).

(2) There holds µn(H) = inf σess(H), and for all m ≥ 1 we have µn+m(H) =
µn(H). Furthermore there are at most n − 1 eigenvalues (counting
multiplicity) below µn(H).

Remark 2. Left as an exercise, one can show that dom(H) can be replaced
by Q(H) up to replacing 〈ψ,Hψ〉 by qH(ψ,ψ).

We emphasize that in the definition of the µn(H)’s we do not put any
condition on the family (φi)1≤i≤n−1. In particular we may have φi = φj and
by construction we have the inequality µn(H) ≤ µn+1(H).

Try to apply it to the case where H = CN and H is an Hermitian matrix.
In the definition of µn(H), what is the family φ1, . . . , φn−1 which attains the
supremum?

As a first application of the min-max principle we show the following.

Proposition 3. Let A ≥ 0 and B two s.a. operators. We assume that
Q(A) ∩Q(B) is dense and that, decomposing

B = B+ −B− = Bχ[0,+∞)(B) +Bχ(−∞,0)(B),

the negative part B− is infinitesimally form bounded w.r.t. A. Furthermore
we assume that for all β ≥ 0 we have:

σess(A+ βB) = [0,+∞).

Then for all n ≥ 1, the function β ∈ [0,+∞) 7→ µn(A + βB) is monotone
decreasing.

We emphasize that A+βB denotes the s.a. operator obtained by the form
sum and the KLMN theorem.

The idea is that we can compare the eigenvalues of two semi-bounded s.a.
A,C operators through the expectations qA(ψ,ψ) and qC(ψ,ψ) provided we
have some inclusion of the form domains. Of course in the proposition we
have in mind the case A = −∆ and B = V .
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Proof of the min-max principle. Let PΩ be the projection valued measure of
H.

We first show the following auxiliary result.
Auxiliary result . Let a ∈ R.

• If a < µn, then dim(ran P(−∞,a)) < n.
• If a > µn, then dim(ran P(−∞,a)) ≥ n.

We prove both claims by contraposition.

Assume dim(ran P(−∞,a)) ≥ n. Then in particular there exists an n-
dimensional space V ⊂ ran P(−∞,a). As H is bounded from below, then
V is in its domain (the spectral measure associated to ψ ∈ V has compact
support).

So given any φ1, . . . , φn−1 ∈ H, the vector space V ∩ {φ1, . . . , φn−1}⊥ has
dimension ≥ 1 and we can find ψ, ‖ψ‖H = 1 in it. By construction (of
V ), there holds 〈ψ,Hψ〉 ≥ a‖ψ‖2H. By definition of µn(H), we thus obtain:
µn(H) ≤ a.

Similarly dim(ran P(−∞,a)) < n. Then the range ran P(−∞,a) is spanned

by at most n − 1 functions φ
(0)
1 , . . . , φ

(0)
n−1 ∈ H. Thus by construction we

have:
dom(H) ∩ {φ(0)

1 , . . . , φ
(0)
n−1}

⊥ ⊂ ran P[a,+∞).

Take ψ in the above set: there holds 〈ψ,Hψ〉 ≥ a‖ψ‖2H. Therefore UH(φ
(0)
1 , . . . , φ

(0)
n−1) ≥

a. By definition of µn(H) we thus obtain µn(H) ≥ UH(φ
(0)
1 , . . . , φ

(0)
n−1) ≥ a.

End of the proof . Observe that the fact that H is semi-bounde imply that
the µn(H)’s are all finite.

The fact that they are not equal to +∞ is obvious (one can make the
dichotomy H has finite dimension hence H is bounded or H has infinite
dimensio but then for all n ≥ 1 and all φ1, . . . , φn−1 ∈ H, the set D(H) ∩
{φ1, . . . , φn−1}⊥ has infinite dimension as well).

the fact that they are not equal to −∞ follows from µ1(H) ≥ c, where c
is the bound of H: remember the inequalities µn+1(H) ≥ µn(H).

Having the definition of the discret and essential spectrum in mind, we
make the dichotomy:

(1) either for all ε > 0, the range ran P(−∞,µn+ε) has infinite dimension,
(2) or there is some ε0 > 0 for which ran P(−∞,µn+ε0) has finite dimen-

sion.

We claim that if the first case holds, then we are in the second case of
Thm 1, and if the second case holds, then we are in the first case of Thm 1.

Assume that for all ε > 0, the range ran P(−∞,µn+ε) has infinite dimen-
sion. Take ε > 0, we know that dim ranP(−∞,µn−ε] ≤ dim ranP(−∞,µn−ε/2) ≤
n− 1. Hence we have:

dim ranP(µn−ε,µn+ε) = +∞,
and as ε > 0 was arbitrary we obtain µn ∈ σess(H). If a < µn, then there
exists ε > 0 with a < a+ ε < µn, and:

dim ranP(a−ε,a+ε) ≤ dim ranP(−∞,a+ε) ≤ n− 1.

So by definition a /∈ σess(H), and µn is the bottom of the essential spectrum.
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Necessarily µn+1 = µn, else we would have:

dim ranP(−∞,2−1(µn+µn+1)) ≤ n+ 1.

Assume that there is some ε0 > 0 for which ran P(−∞,µn+ε0) has finite
dimension. By the auxiliary result, for all ε > 0 we have:

dim ran P(µn−ε,µn+ε) ≥ dim ran P(−∞,µn+ε)−dim ran P(−∞,µn−ε] ≥ n−(n−1) = 1.

Hence µn ∈ σ(H). As

dim ran P(µn−ε0,µn+ε0) ≤ dim ran P(−∞,µn+ε0) < +∞,

we have µn ∈ σdisc(H). In particular there exists δ > 0 such that

(µn − δ, µn + δ) ∩ σ(H) = {µn}.

So we have: dim ran P(−∞,µn] = dim ran P(−∞,µn+δ) ≥ n, and there exists
at least n eigenvalues E1 ≤ E2 ≤ · · · ≤ En ≤ µn. Necessarily En = µn, else
we would have: dim ran P(−∞,En] = n contradicting the auxiliary result.

�

Proof of Proposition 3. Let n ≥ 1 and β ≥ 0.
By assumption the essential spectrum is always [0,+∞), hence µn(A +

βB) ≤ 0 coincides with:

µn(A+βB) = sup
φ1,...,φn−1∈H

min
{

min(0, qA+βB(ψ,ψ)), ψ ∈ Q(A)∩Q(B), ‖ψ‖H = 1
}
.

Let 0 ≤ β1 ≤ β2. For every ψ ∈ Q(A) ∩Q(B), ‖ψ‖H = 1:

(1) either qB(ψ,ψ) ≥ 0 but then qA+βB()ψ,ψ) ≥ 0 for all β ≥ 0,
(2) or qB(ψ,ψ) < 0 but then:

qA+β2B(ψ,ψ) < qA+β1B(ψ,ψ).

Considering the formula of µn, we thus obtain µn(A+β2B) ≤ µn(A+β1B).
�

3. The Rayleig-Ritz method

3.1. The method. This method corresponds to approximating the first
eigenvalues of a semi-bounded operator by restricting the min-max scheme
to a finite dimensional subspace of the domain.

It is immediate that we obtain so an upper bound of the ground state.

Theorem 4. Let H be a semi-bounded s.a. operator and let V ⊂ dom(H)
be an N -dimensional subspace, N ∈ N. Let PV be the orthogonal projection
onto V and HV := PVHPV .

Let µ̂1 ≤ µ̂2 ≤ . . . µ̂N be the eigenvalues of the restriction (HV )|V : V →
V . Then there holds:

∀ 1 ≤ n ≤ N, µn(H) ≤ µ̂n.

In particular we have the following.
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Corollary 5. Under the assumption of the previous theorem: if H has M
eigenvalues below the essential spectrum E1 ≤ E2 ≤ . . . ≤ EM then for all
1 ≤ k ≤ min(N,M) we have Ek ≤ µ̂k.

Furthermore, let (φn)n∈N is a Hilbert basis made of elements of dom(H),
and assume that µ1(H) is an eigenvalue with normalized eigenfunction ψ =∑

n anφn. Let PN be the orthogonal projection onto the span of the φn,
1 ≤ n ≤ N .

If limN→+∞〈PNψ,HPNψ〉 = µ1(H) then the lowest eigenvalue µ̂
(N)
1 of

the matrix (〈φn, Hφm〉)1≤n,m≤N converges to µ1(H) as N → +∞.

For the latter result, the matrix corresponds to the restriction of PNHPN
to ran PN , written in the basis (φ1, . . . , φN ). If limN→+∞〈PNψ,HPNψ〉 =
µ1(H), then as N → +∞ we get by the Rayleigh-Ritz method:

µ1(H) ≤ µ̂(N)
1 ≤ 〈PNψ,HPNψ〉

〈ψ, PNψ〉
−→

n→+∞
µ1(H).

Proof of Thm 4. By the min-max principle applied to the restriction of HV

to V , we have:

µ̂m := sup
φi∈V

1≤i≤m−1

inf
ψ∈V, ‖ψ‖H=1

〈φi,ψ〉=0

〈ψ,Hψ〉,

= sup
φi∈H

1≤i≤m−1

inf
ψ∈V, ‖ψ‖H=1

〈PVφi,ψ〉=0

〈ψ,Hψ〉,

= sup
φi∈V

1≤i≤m−1

inf
ψ∈V, ‖ψ‖H=1

〈φi,ψ〉=0

〈ψ,Hψ〉,

≥ sup
φi∈V

1≤i≤m−1

inf
ψ∈H, ‖ψ‖H=1

〈φi,ψ〉=0

〈ψ,Hψ〉.

For the third line, we have used the fact that for ψ ∈ V and φi ∈ H there
holds 〈PV φi, ψ〉 = 〈φi, ψ〉. �

3.2. First example. Remember the Hardy inequality in R3: for all ψ ∈
H1(R3), we have: ∫

|ψ(x)|2

|x|2
dx ≤ 4

∫
|∇ψ(x)|2dx.

It implies, as we have seen, that for all 0 < α < 2, the quadratic form
defined by |x|−α is infinitesimally form bounded w.r.t. −∆. Hence using
the KLMN theorem, we get that for all a ∈ R, 0 < b < 4−1, and 0 < α < 2
the following operators are self-adjoint with form domain H1(R3):

−∆− a

|x|α
& −∆− b

|x|2
.

For the latter operator, Hardy’s inequality even ensures us that it has no
negative eigenvalue.

As for the other, we have the following.

Proposition 6. Let V = VR + V∞ with (VR, V∞) ∈ R × L∞(R3) and
limx→+∞ V∞(x) = 0.
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(1) If there exist R0, a, ε > 0 such that for all x ∈ R3, |x| ≥ R0 there
holds:

V (x) ≤ −a|x|−2+ε,

then σdisc(−∆ + V ) is infinite.
(2) If there exist R0 > 0 and b < 1 such that for all x ∈ R3, |x| ≥ R0

there holds:

V (x) ≥ − b
4
|x|−2,

then σdisc(−∆ + V ) is finite.

The condition on the V∞ is to ensure that the essential spectrum of−∆+V
is [0,+∞).

Lemma 7. Let f, g ∈ L∞(Rd) such that limx→+∞ f(x) = limx→+∞ g(x) =
0. Writing down Tf the multiplication operator by f and F the Fourier
transform, then the operator:

f(x)g(−i∇) := TfF
−1TgF

is compact.

The Lemma is proven at the very end.
Here for C > 0 large enough, we have:

(−∆ + V + C)−1 − (−∆ + C)−1 = (−∆ + C)−1(VR + V∞)(−∆ + V + C)−1.
(1)

We have shown previously that (−∆ +C)−1VR(−∆ +V +C)−1 is compact.
Here (−∆ + C)−1V∞ = g(−i∇)V∞(x) is compact as V∞(x), g(p) = (p2 +
C)−1 ∈ L∞(R3) both tend to zero at infinity.

Remark 8. For the second part, we will use a result which will be proven
later on: the fact that if V ∈ R then −∆ + V has only finitely many bound
states.

Proof of Proposition 6. Let us prove the first part.
We have seen that σess(−∆ + V ) = σess(−∆) = [0,+∞). So it suffices to

show that for all n ∈ N there holds µn(−∆+V ) < 0. To do so we will apply
the Rayleigh-Ritz method to well-chosen subspaces.

The key-idea is that under the dilation: ψ(x) 7→ λ−3/2ψ(λ−1x), which is
unitary transformation,

(1) the kinetic energy ‖∇ψ‖2L2 scales like λ−2,

(2) while the potential energy −〈ψ, | · |−2+εψ〉 scales like λ−2+ε.

As ε > 0, for a given ψ, the second term is bigger (in absolute value)
as λ → +∞. So we just have to construct a countable family (ψn)n with
disjoint supports for which this behaviour hold.

Let ψ ∈ C∞0 (R3) different from 0 and such that

‖ψ‖L2 = 1 & supp ψ ⊂
{
x ∈ R3, 1 < |x| < 2

}
.

In particular for λ > 0 we have:

‖ψλ‖L2 = 1 & supp ψλ ⊂
{
x ∈ R3, λ < |x| < 2λ

}
.
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We choose R1 > R0 big enough such that ψR1 satisfies:

〈ψR1 , (−∆ + V )ψR1〉 =

∫
|∇ψR1 |2 +

∫
V |ψR1 |2,

≤
∫
|∇ψR1 |2 − a

∫
|ψR1 |2

| · |2−ε
,

≤ R−2
1

∫
|∇ψ|2 − aR−2+ε

1

|ψ|2

| · |2−ε
< 0.

We then consider the family (ψ2nR1)n≥1: it is an orthonormal family, and
as −∆ + V is a local operator we also have 〈ψn, (−∆ + V )ψm〉 for n 6= m
(as the two functions have disjoint supports). As for ψR1 , we have:

〈ψ2nR1 , (−∆ + V )ψ2nR1〉 ≤ (2nR1)−2

∫
|∇ψ|2 − a(2nR1)−2+ε |ψ|2

| · |2−ε
< 0.

Applying the Rayleigh-Ritz method to VN := span
1≤n≤N

(ψ2nR1) for all N ≥ 1,

we obtain that for all n ∈ N there holds:

µn(−∆ + V ) < 0.

We now turn to the second part. Let W0(x) := V (x)+ b
4 min(1, |x|−2). By

assumption, for |x| ≥ max(R, 1), there holds W0(x) ≥ 0, hence the function
W := min(W0, 0) has compact support.

Furthermore, as V ∈ R + L∞ and b
4 min(1, |x|−2) ∈ L∞(R3), then W0

and W are both in R + L∞. Since W has compact support, then there
holds W ∈ R: it suffices to write W = WR + W∞ and to observe that
WR1|x|≤R+1 ∈ R and W∞1|x|≤R+1 ∈ R.

We have the following inequality of quadratic forms on Q(−∆) = H1(R3):

−∆ + V = −(1− b)∆ +W0 + b
(
−∆− 1

4| · |2
)
,

≥ −(1− b)∆ +W0,

≥ −(1− b)∆ +W.

By the min-max principle, we obtain:

µn(−∆ + V ) ≥ µn(−(1− b)∆ +W ) = (1− b)µn(−∆ + (1− b)−1W ).

As W ∈ R, then −∆ + (1 − b)−1W has only finitely many bound states
and σess(−∆ + (1− b)−1W ) = [0,+∞). Let N0 ≥ 0 be the number of bound
states: for n ≥ N0 + 1 there holds:

0 ≥ µn(−∆ + V ) ≥ (1− b)µn(−∆ + (1− b)−1W ) = 0.

�

Proof of Lemma 7. You are asked in the fourth assigment to show that
if F,G ∈ L2(Rd), then the operator F (x)G(−i∇) is compact (and even
Hilbert-Schmidt).

Here considerR > 0 and let fR(x) := f(x)1|x|≤R and gR(x) := g(x)1|x|≤R.

For any R > 0, we have fR, gR ∈ L2(Rd), hence fR(x)gR(−i∇) is compact.
As limR→+∞‖f(x) − fR(x)‖L = limR→+∞‖g(−i∇) − gR(−i∇)‖L = 0 by
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the assumption on the decay of the functions, we get that f(x)g(−i∇) is
compact as an operator-norm limit of compact operators. �
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