Advanced Mathematical Physics

Assignment 1 of 4

To be handed in on Friday, May 5, at the beginning of the seminar.

Problem 1: Self-adjoint extensions (5+5 points)

- **a.** Let \mathcal{H} be a Hilbert space and A, B densely defined operators in \mathcal{H} . Show that: If $A \subset B$, then $B^* \subset A^*$.
- **b.** Let \mathcal{H} be a Hilbert space and A, B densely defined operators in \mathcal{H} . Show that: If A is symmetric and B is a self-adjoint extension of A, then $A \subset B \subset A^*$

Problem 2: Graph of the adjoint operator (5+5 points)

Let \mathcal{H} be a Hilbert space and A a self-adjoint operator in \mathcal{H} . Consider the direct sum $\mathcal{H} \oplus \mathcal{H}$ equipped with the scalar product $\langle (x', y'), (x, y) \rangle_{\mathcal{H} \oplus \mathcal{H}} := \langle x', x \rangle_{\mathcal{H}} + \langle y', y \rangle_{\mathcal{H}}$.

- **a.** Verify that $\mathcal{H} \oplus \mathcal{H}$ is indeed a Hilbert space (i. e. show that $\mathcal{H} \oplus \mathcal{H}$ satisfies the vector space axioms, show that $\langle \cdot, \cdot \rangle_{\mathcal{H} \oplus \mathcal{H}}$ satisfies the axioms of a scalar product, and show that $\mathcal{H} \oplus \mathcal{H}$ with the natural norm is complete).
- **b.** Let $\Gamma_A \subset \mathcal{H} \oplus \mathcal{H}$ the graph of A. Show that

$$(\Gamma_A)^{\perp} = \{ (x', y') \in \mathcal{H} \oplus \mathcal{H} : y' \in \mathcal{D}(A) \text{ and } x' = -Ay' \}.$$

Problem 3: Operator with trivial adjoint (2+6+2 points)

Let $\mathcal{H} = L^2(\mathbb{R})$ and $(e_n)_{n \in \mathbb{N}}$ an orthonormal basis¹ of \mathcal{H} . Define an operator $A : \mathcal{D} \subset$ $\mathcal{H} \to \mathcal{H}$ by $\mathcal{D} := C_0^\infty(\mathbb{R})$ and

$$Af := \sum_{n=0}^{\infty} f(n)e_n.$$
(1)

- **a.** Show that: The series in (1) converges.
- **b.** Show that: For any $g \in \mathcal{H}, g \neq 0$, the mapping $f \mapsto \langle g, Af \rangle$ is not continuous, as a function from $(\mathcal{D}, \|\cdot\|_{\mathcal{H}})$ to \mathbb{C} .

¹A countable family $(e_n)_{n \in \mathbb{N}}$ in a Hilbert space \mathcal{H} is called orthonormal basis if $\langle e_n, e_k \rangle = \delta_{n,k}$ and for all $x \in \mathcal{H}$ we have $x = \sum_{n=0}^{\infty} e_n \langle e_n, x \rangle$ (as a convergent series). Example: For $e_n(x) = \frac{1}{\sqrt{2\pi}} e^{inx}$, $n \in \mathbb{Z}$, in $\mathcal{H} = L^2((0, 2\pi))$, this becomes the ordinary Fourier series.

c. Show that the domain $D(A^*)$ is trivial, i. e. $D(A^*) = \{0\}$.

Problem 4: Resolvent of the free Laplacian (10 points)

Let $H_0 = -\Delta$ the Laplacian in $L^2(\mathbb{R}^3)$. Show that for $\varphi \in L^2(\mathbb{R}^3)$ and $\kappa > 0$ we have

$$\left(\left(H_0+\kappa^2\right)^{-1}\varphi\right)(x) = \frac{1}{4\pi}\int_{\mathbb{R}^3}\frac{e^{-\kappa|x-y|}}{|x-y|}\varphi(y)\mathrm{d}y.$$

Hints: First, recall (giving at least a short sketch) why a multiplication operator in Fourier space turns into a convolution with the inversely transformed function \check{f} :

$$\left(\mathcal{F}^{-1}T_f\mathcal{F}\varphi\right)(x) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} \check{f}(x-y)\varphi(y) \mathrm{d}y.$$

Then use spherical coordinates and the residue theorem with a convenient complex integration path to calculate \check{f} .

Remark 1: The function $\frac{e^{-\kappa |x|}}{4\pi |x|}$ is called Yukawa potential or free Green's function.

Remark 2: In electrodynamics or partial differential equations, one considers linear differential operators L and tries to find a so called Green's function G such that $(LG)(x) = \delta(x)$ (Dirac delta distribution). So from the meta point of view the Green's function G is the representation of the resolvent (inverse of L) as the kernel of an integral operator.

Problem 5: Proof of the Weyl criterion (10 points)

Let X be a Banach space, $A: D \subset X \to X$ an operator and $\lambda \in \mathbb{C}$.

Prove that: If there exists a sequence $(x_n)_{n \in \mathbb{N}}$ in D with $||x_n|| = 1$ for all $n \in \mathbb{N}$, and $||(A - \lambda)x_n|| \to 0 \ (n \to \infty)$, then $\lambda \in \sigma(A)$.