
SELF-ADJOINT EXTENSIONS

1. Introduction

We have seen that the issue of self-adjointness is subtle when dealing with
unbounded operators.

Usually, we have at hand a differential operator which is manifestly sym-
metric on a convenient domain of regular functions, say in the Schwartz class
or infinitely smooth with compact support.

As we have seen in earlier lectures such an operator is closable. However
essentially self-adjointness is not necessarily given, sometimes false and even
there might not be self-adjoint extensions at all.

The issue is of great matter in mathematical physics as if essential self-
adjointness fails to hold, then the question arises to decide which one of the
possible self-adjoint extension (if they exist at all) describes the considered
system (in particular which one is to choose to generate the dynamics e−itH).

In this part we give a framework to study the existence of self-adjoint
extensions of a symmetric operator. We then illustrate the method with the
simple example of −i d

dx on C∞0 (0, 1) 1.

Remark 1. Throughout this part A denotes a symmetric operator (densely
defined) on a Hilbert space H. Its domain is written dom(A).

Furthermore the complex conjugation of a complex number z is written z∗

so that the notation (·) is kept for the closure of operators or of subset in H.

The important (necesary and sufficient) condition to remember is the
equality of the defect indices of A:

d± := dim ker(A∗ ∓ i).

2. A criterion for essential self-adjointness

We start with a criterion for self-adjointness.

Lemma 2. Let A sym. on H. If there exists z ∈ C such that ran(A+ z) =
ran(A+ z∗) = H, then A is self-adjoint.

Proof. Let ψ ∈ dom(A∗): let us show that ψ ∈ dom(A). By assumption
there exists χ ∈ dom(A) with (A+ z∗)χ = (A∗ + z∗)ψ. For all ϕ ∈ dom(A)
we thus have:

〈ψ, (A+ z)ϕ〉 def= 〈A∗ψ + z∗ψ,ϕ〉,
= 〈(A+ z∗)χ, ϕ〉,
def
= 〈χ, (A+ z)ϕ〉.

As ran(A+ z) = H, we obtain ψ = χ ∈ dom(A). �

1there is no need for this theory to study the s.a. extensions in this case, but it is
always good to check one result on something we understand well.
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The criterion for essential self-adjointness is the following.

Lemma 3. A symmetric operator A is essentially s.a. if and only if there
exists z ∈ C \ R such that

ran(A− z) = ran(A− z∗) = H,
or equivalently:

ker(A∗ − z) = ker(A∗ − z∗) = {0}.

Remark 4. As C \ R ⊂ ρ(A), if the condition holds for some z ∈ C \ R, it
also holds for another z0 ∈ C \ R by the identity:

(A− z0)ψ = (A− z0)(A− z)−1(A− z)ψ, ψ ∈ dom(A).

Indeed, as (A − z0)(A − z)−1 ∈ L(H) is invertible, if ran(A − z) is dense,
then so is ran(A− z0).

Proof . Claim: We have the equalities

ran(A− z) = ran(A− z) & ran(A− z∗) = ran(A− z∗).
Using the claim and Lemma 2, we get that A is s.a.
Let us show the claim. this follows from the auxiliary result:

Lemma 5 (Aux. res.). Let A sym. on H. For z ∈ C \ R, (A − z) is
injective and its inverse (A − z)−1 : ran(A − z) → dom(A) is bounded with
norm smaller than |Im(z)|−1.

Proof of Aux. res. Let ψ ∈ dom(A) and z = x + iy with x, y ∈ R. As A is
symmetric there holds:

〈(A− z)ψ, (A− z)ψ〉 = ‖Aψ‖2H + x2‖ψ‖H − 2x〈Aψ,ψ〉+ y2‖ψ‖2H,
≥ y2‖ψ‖2H.

We have used the Cauchy-Schwarz inequality and 2ab ≤ a2 + b2. Hence
(A − z) is injective and its inverse (A − z)−1 : ran(A − z) → dom(A) is
bounded with bound |y|−1.

We consider the graph of (A− z)−1:
Γ (A− z)−1 :=

{
((A− z)ψ,ψ), ψ ∈ dom(A)

}
.

Let us write ϕ = (A− z)ψ for ψ ∈ dom(A): we have

‖ψ‖H ≤ |y|−1‖ϕ‖H. (1)

By the above bound, the operator (A− z)−1 can be extended to the closure
of its domain ran(A− z) and:

dom
(

(A− z)−1
)

= dom(A− z)−1.

We check this claim by studying the closure of Γ (A− z)−1. Let (ϕn) be
a sequence of dom (A− z)−1 with ϕn → ϕ′ and ψn = (A− z)−1ϕn → ψ′. By
(1), we have ‖ψn‖H ≤ |y|−1‖ϕn‖H, hence the closure of the graph is also a
graph. This also shows the equality on the domains. This ends the proof if
we notice that Γ (A− z)−1 is, up to the switch (ϕ,ψ) 7→ (ψ,ϕ) the graph of
(A− z). Hence:

ran(A− z) = dom(A− z)−1 = dom
(

(A− z)−1
)

= ran
(
A− z

)
,
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which ends the proof. �

3. Self-adjoint extensions

As said above we choose z = i to simplify. The outcome is that a particu-
lar role is played by ran(A−i) and ran(A−i), or their orthogonal ker(A∗+i)
and ker(A∗ − i).

Definition 1. For A sym. we call K± := ker(A∗ ∓ i) the deficiency spaces
and their dimension d± the defect indices.

Furthermore V := (A− i)(A+ i)−1 : ran(A+ i)→ ran(A− i) is called its
Cayley transform.

Theorem 6. The Cayley transform defines a bijection between the set of all
symmetric operators A and the set of all libear isometric 2 operators V for
which (1− V ) : dom(V )→ ran(1− V ) has dense range and trivial kernel.

Remark 7. Above we will see that ran(1 − V ) coincides with dom(A) and
that we have

A = i(1 + V )(1− V )−1 (2)

This theorem is proven below in Section 6
From Lemma 2, we get that a self-adjoint operator corresponds to that

for which the Cayley transform is unitary (that is defined on the whole
space H). Assume that A admits a self-adjoint extension A1. There holds
ran(A1 ± i) = H and we have:

ran(A1 ± i) = H = ran(A± i)
⊥
⊕ ker(A∗ ∓ i),

= ran(A± i)
⊥
⊕ ker(A∗ ∓ i).

Let us consider the Cayley transforms V and V1 of A and A1 respectively.
As A ⊂ A1, then V1 also extends V and as they are both isometric, then V1
defines also an isometry between the two deficiency spaces. Thus a necessary
condition for A to have a self-adjoint extension is that they must have the
same dimension. From the remark, we get that an element ψ ∈ dom(A1)
can be decomposed as:

ψ = ψ0 + (1− V )ϕ+, ψ0 ∈ dom(A), ϕ+ ∈ ker(A∗ − i), (3)

and from (2) we have:

A1ψ = Aψ0 + i(1 + V )ϕ+.

Observe also that V ϕ+ = ϕ− ∈ ker(A∗ + i).

Remark 8. We can show in fact that the decomposition (3) is unique. If
we introduce the graph norm w.r.t. A∗:

‖ψ‖2A∗ = ‖ψ‖2H + ‖A∗ψ‖2H, ψ ∈ dom(A∗),

with corresponding inner product

〈ψ,ϕ〉A∗ := 〈ψ,ϕ〉+ 〈A∗ψ,A∗ϕ〉,

2that is which conserves the norm ‖·‖H, or equivalently the inner product 〈·, ·〉
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then the following decomposition is orthogonal w.r.t. this inner product:

dom(A)
⊥
⊕ ker(A∗ − i)⊕ ker(A∗ + i). (4)

In particular the decomposition (3) is orthogonal w.r.t. this inner product.
This is left as an exercise.

Conversely, if the defect indices are equal, it is sufficient to consider a
linear isometric operator U : ker(A∗ − i) → ker(A∗ + i) to define a self-
adjoint extension A1 of A by setting:{

dom(A1) :=
{
ψ0 + (ϕ+ + Uϕ+), ψ ∈ dom(A), ϕ+ ∈ ker(A∗ − i)

}
,

A1(ψ0 + (ϕ+ + Uϕ+)) := A∗(ψ0 + (ϕ+ + Uϕ+)) = Aψ0 + i(ϕ+ − Uϕ+).

By construction it extends A, we can easily check that it is symmetric and
closed (with the help of (4)). At last ker(A∗1 ∓ i) = {0} for the following
reason. Pick ψ± ∈ ker(A∗1 ∓ i) ⊂ ker(A∗ ∓ i), we have:

0 = 〈ψ+, (A1 + i)(ψ+ + Uψ+)〉 = 〈ψ+, 2iψ+〉 = 2i‖ψ+‖2H,
0 = 〈ψ−, (A1 − i)(U−1ψ− + ψ−)〉 = 〈ψ−,−2iψ−〉 = −2i‖ψ−‖2H,

which yields ψ+ = ψ− = 0. By Lemma (2) (with z = i), A1 is self-adjoint.
We thus obtained the main result.

Theorem 9. A symmetric operator A has s.a. extensions if and only if its
defect indices are equal (may be both infinite). A s.a. extension A ⊂ A1 has
a Cayley transform V1 ∈ L(H) which is unitary. Furthermore there holds:

dom(A1) = ran(1− V1) = dom(A) + (1− V1) ker(A∗ − i),

and for ψ = ψ0 + (1− V1)ϕ+ ∈ dom(A1) we have

A1(ψ + (1− V1)ϕ+) = Aψ + i(ϕ+ + V1ϕ+).

4. Illustration of the method

We consider the operator A := −i d
dx on C∞0 (0, 1), or, up to closing it, on

H1
0 (0, 1). It is obviously symmetric on H = L2(0, 1), and it is a classical

result that its self-adjoint extensions Aθ are given by:

dom(Aθ) :=
{
ψ ∈ H1(0, 1), ψ(0) = eiθψ(1)

}
.

The s.a. extensions are prescribed by the transmission conditions across
1− → 0+ (think of L2(0, 1) as L2(R/Z)).

We check this result with the method explained in the previous section.

1. Determination of A∗. Let ψ ∈ dom(A∗), by definition this means that
there exists χ ∈ L2(0, 1) such that for all ϕ ∈ dom(A) = C∞0 (0, 1) we have:

〈ψ,Aϕ〉L2 = 〈χ, ϕ〉L2 , that is − i〈ψ,ϕ′〉L2 = 〈χ, ϕ〉L2 .

This is precisely the definition of H1(0, 1), and A∗ = −i d
dx with dom(A∗) =

H1(0, 1).
We recall that this space is embedded in the space of absolutely continuous

functions, and that its elements admit a 1/2-Hölder representent. This
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simply follows from:

|ψ(x)− ψ(y)| ≤
∫ y

x
|ψ′(s)|ds,

≤

√∫ y

x
ds

∫ y

x
|ψ′(s)|2ds,

≤
√
|x− y|‖ψ′‖L2 .

2. Determination of ker(A∗ ∓ i). Let ψ ∈ ker(A∗ ∓ i). This means that
on (0, 1), it satisfies the O.D.E.

−iψ′ ∓ iψ = 0 that is ψ′ = ∓ψ.

So ψ(x) is colinear to e−x resp. ex. We normalize them and defines:

ϕ+(x) :=

√
2

1− e−2
e−x & ϕ−(x) :=

√
2

e2 − 1
ex.

3. Discussion on the s.a. extensions. Thus the defect indices are (1, 1)
and the s.a. extensions are parametrized by the unitary operator from
ker(A∗ − i) = Cϕ+ ' C to ker(A∗ + i) = Cϕ− ' C. The latter set is
topologically the circle S1 with corresponding unitaries:

Uzλϕ+ := zλϕ−, z = eiτ ∈ S1, λ ∈ C.

The corresponding s.a. extensions are:{
dom(Az) =

{
ψ0 + λ(ϕ+ + zϕ−), ψ0 ∈ H1

0 (0, 1), λ ∈ C
}
,

Az
(
ψ0 + λ(ϕ+ + zϕ−)

)
= −iψ′0 + iλ(ϕ+ − ϕ−).

4. Link with the transmission condition. Let us check that there is
a one-to-one correspondence between the complex number z and the the
parameter in the transmission conditions. Let ψ ∈ dom(Az) with ψ =
ψ0 + λ(ϕ+ + zϕ−), with λ 6= 0.

There holds ψ(0) = λ(ϕ+(0) + zϕ−(0)) 6= 0 and ψ(1) = λ(ϕ+(1) +
zϕ−(1)) 6= 0, and:

ψ(0)

ψ(1)
=
ϕ+(0) + zϕ−(0)

ϕ+(1) + zϕ−(1)
=

e+ z

1 + ez
=: αz.

It is straightforward to check |αz| = 1, and conversely this relation can be
inversed:

z =
e− αz
αze− 1

.

The case z = 1, that is α = 1, corresponds to the well-known periodic
boundary conditions, or equivalently to the extension with domainH1(R/Z).
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5. A criterion for the existsence of s.a. extensions

We give a criterion for the existence of s.a. extensions due to von Neu-
mann.

Theorem 10. Let A sym. on H. Assume that there exists a conjugation
C that maps dom(A) onto itself, that is that there exists an antilinear map
C.H → H so that C2 = 1. Assume firthermore that that AC = CA, then A
has s.a. extensions.

Proof. As C dom(A) ⊂ dom(A), by applying C a second time, we get
dom(A) ⊂ C dom(A) and the equality of the two sets. Let ϕ+ ∈ ker(A∗− i).
For all ψ ∈ dom(A), there holds:

0 = 〈ϕ+, (A+ i)ψ〉 = 〈Cϕ+, C(A+ i)ψ〉,

〈Cϕ+, (A− i)Cψ〉,

hence C ker(A∗ − i) ⊂ ker(A∗ + i). By symmetry we have C ker(A∗ + i) ⊂
ker(A∗ − i), and the two deficiency spaces are (anti)-isomorphic through
C. �

6. Proof of Theorem 6

A determines V . We first check that V is a linear isometry.
Let ψ ∈ dom(A). As A is sym, there holds:

‖(A± i)ψ‖2H = ‖Aψ‖2H + ‖ψ‖2H +±i
(
〈Aψ,ψ〉 − 〈ψ,Aψ〉

)
,

= ‖Aψ‖2H + ‖ψ‖2H.

Hence

V : (A+ i)ψ ∈ ran(A+ i) 7→ (A− i)ψ ∈ ran(A− i).

is isometric.
A computation yields the following equality (to be read as maps from

dom(V )→ H):

(1± V ) = (A+ i)(A+ i)−1 ± (A− i)(A+ i)−1,

=
[
(A+ i)± (A− i)

]
(A+ i)−1,

=

{
2A(A+ i)−1,
2i(A+ i)−1.

In particular ran(1− V ) = 2i(A+ i)−1 ran(A+ i) = dom(A) is dense. Fur-
thermore we have:

A = i(1 + V )(1− V )−1. (5)

At last we check that ker(1− V ) is trivial, that is ker
(
(A+ i)−1

)
|ran(A+i)

=

{0}. Let (A+ i)ψ ∈ ran(A+ i). As shown above we have:

‖(A+ i)ψ‖2H = ‖Aψ‖2H + ‖ψ‖2H,

hence if ψ = 0 then (A+ i)ψ = 0.
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V determines A. Conversely let V : dom(V ) → H be a linear isometry.
We use (5) as a definition of AV : ran(1−V )→ ran(1 +V ). By assumption
it is both well and densely defined.

We check that AV is a symmetric operator. As V is isometric, for ψ ∈
dom(V ), we have:

〈(1± V )ψ, (1∓ V )ψ〉 = ±2iIm〈V ψ, ψ〉.
Hence for all (1− V )ψ ∈ dom(AV ), there holds:

〈AV ψ,ψ〉
def
= −i〈(1 + V )ψ, (1− V )ψ〉,
= 2Im〈V ψ, ψ〉,
= i〈(1− V )ψ, (1 + V )ψ〉,
def
= 〈ψ,AV ψ〉.

At last, let us check that V is the Cayley transform of AV . We have the
following equality of operators defined from dom(AV ) = ran(1− V ) to H.

(AV ± i) = i(1 + V )(1− V )−1,

= i
[
(1 + V )± (1− V )

]
(1− V )−1,

=

{
2i(1− V )−1,
2iV (1− V )−1.

Tthis gives the following equality of operators defined from ran(AV + i) to
ran(AV − i):

(AV − i)(AV + i)−1 = 2iV (1− V )−1
[
2i(1− V )−1

]−1
= V.

References

[1] E. B. Davies, Spectral theory and differential operators, Cambridge Studies in Advanced
Mathematics, vol. 42, Cambridge University Press, Cambridge, 1995. MR1349825

[2] Michael Reed and Barry Simon, Methods of modern mathematical physics. II. Fourier
analysis, aelf-adjointness, Academic Press, New York-London, 1972. MR0493419

[3] Gerald Teschl, Mathematical methods in quantum mechanics, 2nd ed., Graduate Stud-
ies in Mathematics, vol. 157, American Mathematical Society, Providence, RI, 2014.
With applications to Schrödinger operators. MR3243083


	1. Introduction
	2. A criterion for essential self-adjointness
	3. Self-adjoint extensions
	4. Illustration of the method
	5. A criterion for the existsence of s.a. extensions
	6. Proof of Theorem 6
	References

