
ROLLNIK POTENTIALS

1. Introduction

In this part we will study in more details the potentials V which are in
the Rollnik class. We recall that it corresponds to the Banach space

R :=
{
V measurable in R3, ‖V ‖2R =

∫∫
R3×R3

|V (x)||V (y)|
|x− y|2

dxdy < +∞
}
,

and that by the Hardy-Littlewood-Sobolev inequality [1], we have:

L3/2(R3) ⊂ R.

So this class contains a more well known class of functions. In this course,
they constitute a class of potentials for which interesting results can be
proven with few technicalities.

Here, we aim to prove two results, which we gather in the following propo-
sition.

Proposition 1. Let V ∈ R real valued. Then

(1) V is infinitesimally form bounded w.r.t. −∆.
(2) There exists a > 0 such that (−∆ + V + a2)−1 − (−∆ + a2)−1 is

compact, and σess(−∆ + V ) = σess(−∆) = [0,+∞).

The statement on the essential spectrum simply follows from the Weyl
theorem we have seen on the stability of the essential spectrum: for two s.a.
operator, if the difference of the resolvent is compact, then their essential
spectra coincide.

Along the prooof we will use the important result of operator monotonicity
of the inverse.

Lemma 2. Let A,B two positive s.a. operators satisfying:

0 ≤ A ≤ B.

If A is invertible, then so is B and we have:

0 ≤ B−1 ≤ A−1.

Remark 3. The operator inequality 0 ≤ A ≤ B has to be understood in the
following sense: the inclusion Q(B) ⊂ Q(A) holds, and for all ψ ∈ Q(B)
we have:

0 ≤ qA[ψ,ψ] ≤ qB[ψ,ψ],

where qA and qB denote the corresponding quadratic forms. Of course for
ψ ∈ dom(B) ∩ dom(A) this means:

0 ≤ 〈ψ,Aψ〉 ≤ 〈ψ,Bψ〉.
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2. Proof of Proposition 1

Auxiliary result . We first prove an auxiliary result and show that for all
a > 0, the following operators are compact:

Ka := |V |1/2(−∆ + a2)−1|V |1/2 = k∗aka, ka := (−∆ + a2)−1/2|V |1/2,
and that we have: lima→+∞‖ka‖L = 0.

1. Observe that Ka has integral kernel:

Ka(x, y) =
1

4π
|V (x)|1/2 e

−a|x−y|

|x− y|
|V (y)|1/2.

Indeed, |V |1/2 is a multiplication operator while we know that (−∆ + a2)−1

acts by convolution by the Yukawa potential:

Ya(x) =
1

4π

e−a|x|

|x|
.

Putting everything together we obtain:

(Kaψ)(x) =

∫
y∈R3

1

4π
|V (x)|1/2 e

−a|x−y|

|x− y|
|V (y)|1/2ψ(y)dy.

2. This integral kernel Ka(·, ·) is L2(R3 × R3).
You are asked in the fourth assignment to show that this implies that

Ka is compact. In fact it is even more: it is Hilbert-Schmidt, and writing
λ1 ≥ λ2 ≥ · · · the sequence of eigenvalues of Ka counted with multiplicity
we have: ∫∫

|Ka(x, y)|2dxdy =
∑
n∈N
|λn|2.

Here a simple computation gives:∫∫
|Ka(x, y)|2dxdy =

1

(4π)2

∫∫
R3×R3

|V (x)|e−2a|x−y||V (y)|
|x− y|2

dxdy,

≤ 1

(4π)2

∫∫
R3×R3

|V (x)||V (y)|
|x− y|2

dxdy < +∞.

3. We have lim‖Ka(·, ·)‖L2 = 0. This follows from the dominated conver-
gence. Indeed we have:

• |Ka(x, y)|2 ≤ 1
(4π)2

|V (x)||V (y)|
|x−y|2 , latter function which is integrable in

R3 × R3,
• lima→+∞ |Ka(x, y)|2 = 0 for all x 6= y, hence almost everywhere in
R3 × R3.

4. By the Cauchy-Schwarz inequality we have:∫ ∣∣∣∣ ∫ Ka(x, y)ψ(y)dy

∣∣∣∣2dx ≤ ∫ dx

∫
|Ka(x, y)|2dy

∫
|ψ(y′)|2dy′ ≤ ‖Ka(·, ·)‖2L2‖ψ‖2L2 .

Hence we recover ‖Ka‖L ≤ ‖Ka(·, ·)‖L2 . Furthermore there holds:

‖Ka‖L = ‖k∗aka‖L = ‖ka‖2L →
a→+∞

0.

5. ka is compact. It is obvious, but let us check it. Let us pick a sequence
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(ψn) in L2(R3) which converges weakly to ψ. We aim to show that (kaψn)
converges in norm. We have:

‖ka(ψn − ψ)‖2L2 = ‖kaψn‖L2 + ‖ψ‖2L2 + 2Re〈kaψn, kaψ〉.

As ka is bounded, we have Re〈kaψn, kaψ〉 → Re〈kaψ, kaψ〉 = ‖kaψ‖2L2 .
Hence we have norm convergence if and only if we have convergence of
the norm1 ‖kaψn‖L2 . Here we have:

‖kaψn‖2L2 = 〈Kaψn, ψn〉 → 〈Kaψ,ψ〉 = ‖kaψ‖2L2 .

We have used the fact that (Kaψn) converges strongly.

Proof of V Î −∆. It simply follows the fact that:

ε(a) := ‖(−∆ + a2)−1/2|V |(−∆ + a2)−1/2‖L = ‖kak∗a‖L = ‖ka‖2L −→a→+∞
0.

Let ψ ∈ H1(R3) = Q(−∆). We have:

|〈ψ, V ψ〉| ≤
∫
|V ||ψ|2 = 〈ψ, |V |ψ〉,

≤
〈

(−∆ + a2)1/2ψ, (−∆ + a2)−1/2|V |(−∆ + a2)−1/2(−∆ + a2)1/2ψ
〉
,

≤ ε(a)‖(−∆ + a2)1/2ψ‖2L2 = ε(a)‖∇ψ‖2L2 + a2ε(a)‖ψ‖2L2 .

End of the proof . Up to taking a > 0 big enough we have 0 < ε(a) < 2−1.
Hence for ψ ∈ H2(R3), we get:

0 ≤ 2−1〈ψ, (−∆ + a2)ψ〉 ≤ 〈ψ, (−∆ + a2 + V )ψ〉 ≤ 3/2〈ψ, (−∆ + a2)ψ〉.

This inequality naturally extends to H1(R3) by density (but we have to
rewrite the inequalities in terms of the corresponding quadratic forms). By
Lemma 2, we get:

2/3(−∆ + a2)−1 ≤ (−∆ + a2 + V )−1 ≤ 2(−∆ + a2)−1.

By conjugating with (−∆ + a2)1/2, we obtain:

2/3 ≤ (−∆ + a2)1/2(−∆ + a2 + V )−1(−∆ + a2)1/2 ≤ 2,

hence (−∆ + a2)1/2(−∆ + a2 + V )−1(−∆ + a2)1/2 is a bounded self-adjoint
operator.

Now consider the difference of the resolvents:

(−∆ + a2 + V )−1 − (−∆ + a2)−1 = (−∆ + a2)−1V (−∆ + a2 + V )−1,

=
[
(−∆ + a2)−1|V |1/2

]
sign(V )

[
|V |1/2(−∆ + a2)−1/2

]
×
[
(−∆ + a2)1/2(−∆ + a2 + V )−1(−∆ + a2)1/2

]
(−∆ + a2)−1/2. (1)

It is compact as the composition of compact and bounded operators.

1We say that there is no loss of mass.
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3. Proof of Lemma 2

As A is invertible, then 0 /∈ σ(A), and there exists ε > 0 with:

ε ≤ A.
In particular for all ψ ∈ dom(B) ⊂ Q(B) ⊂ Q(A), we have:

ε‖ψ‖2H ≤ qA(ψ,ψ) ≤ qB(ψ,ψ) ≤ 〈ψ,Bψ〉.
This shows that B is injective and that 0 is not in the spectrum of B (if
you are not convinced you can argue by contradiction and by taking a Weyl
sequence). Furthermore the inequality shows that B−1 is bounded, positive
with norm smaller than ε−1.

Let ψ ∈ H. We show that 〈ψ,B−1ψ〉 ≤ 〈ψ,A−1ψ〉. We introduce φ ∈
Q(A) to be chosen later. Using the positivity of A, we have:

0 ≤ qA(φ−A−1ψ, φ−A−1ψ) = qA(φ, φ)− 2Re qA(φ,A−1ψ) + qA(A−1ψ,A−1ψ),

= qA(φ, φ)− 2Re〈φ, ψ〉+ 〈ψ,A−1ψ〉.
Hence we have:

〈ψ,A−1ψ〉 ≥ 2Re〈φ, ψ〉 − qA(φ, φ),

≥ 2Re〈φ, ψ〉 − qB(φ, φ).

Choosing φ = B−1ψ ∈ dom(B) ⊂ Q(B) ⊂ Q(A), we obtain:

〈ψ,A−1ψ〉 ≥ 2〈B−1ψ,ψ〉 − 〈ψ,B−1ψ〉 = 〈ψ,B−1ψ〉.
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