
QUADRATIC FORMS

1. Introduction

In this part we will introduce the notion of (unbounded) quadratic forms.
This provides us with a convenient way to define self-adjoint operators from
the energy, under suitable assumptions.

Three main results are to be remembered:

(1) Theorem 4 on closed and semi-bounded quadratic forms,
(2) the Friedrich extension of a positive symmetric operator,
(3) and the KLMN theorem, which may be seen as the quadratic form

version of the Kato-Rellich theorem.

We emphasize the following important applications: the definition of the
magnetic Schrödinger operator | − i∇ + A|2, for the magnetic potential
A ∈ L2

loc(R3)3, and that of (minus) the Dirichlet Laplacian −∆D, as the
Friedrich extension of −∆ restricted to smooth functions in C∞0 (Ω) of an
open domain Ω ⊂ Rd.

The proofs of the main results are interesting because they led us to
consider different Hilbert spaces, one (continuously) embedded in another
like

H+1 ⊂ H ⊂ H−1 = H′+1.

For all of them Riesz lemma holds, enabling us to identify any of them
with their continuous dual. Nevertheless we will still make the distinction
between H+1, which is a subset of H and its dual H′+1 which contains H.
You have already encountered such a situation with Sobolev spaces:

Hn(Rd) ⊂ L2(Rd) ⊂ H−n(Rd) =
(
Hn(Rd)

)′
.

2. Quadratic forms

2.1. Definition. We start with the definition of the main object under con-
sideration. As usual H denotes the underlying Hilbert space.

Definition 1. A (densely defined) sesquilinear form is a map q : Q(q) ×
Q(q)→ C where

(1) the form domain Q(q) ⊂ H is dense in H,
(2) the map φ 7→ q(φ, ψ) is conjugate linear and

the map φ 7→ q(ψ, φ) is linear.

The quadratic form q associated to the sesquilinear map is the map:

q : ψ ∈ Q(q) 7→ q(ψ,ψ).

Remark 1. Some authors do not make the distinction between sesquilin-
ear forms and quadratic forms and call indifferently a quadratic form both
functions q(·, ·) and q(·).
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We have indeed a one-to-one mapping between them and from a quadratic
form q(·) we recover the underlying sesquilinear form by polarization1:

q(φ, ψ) =
1

4

[
q(φ+ ψ)− q(φ− ψ) +

1

i
(q(φ+ iψ)− q(φ− iψ))

]
.

Definition 2. Let q be a quadratic form.
We say that q is symmetric if for all φ, ψ ∈ Q(q) there holds: q(φ, ψ) =

q(ψ, φ).
We say that q is semi-bounded from below if there exists c ∈ R such that

for all ψ ∈ Q(q) there holds: q(ψ,ψ) ≥ c‖ψ‖2H. The number c is called a
bound of the quadratic form.

Remark 2. 1. We will often say semi-bounded instead of bounded from
below.

2. Note that this definition extends to symmetric operators A: we say
that such an operator is bounde from below if there exists c ∈ R such that
for all ψ ∈ dom(A) we have 〈ψ,Aψ〉 ≥ c‖ψ‖2H. The two notions are related
as we will see with the Friedrich extension.

3. As H is a complex Hilbert space, if q is semi-bounded then it is automat-
ically symmetric as we can check by developping the real numbers q(φ+λψ)
for λ = 1 and λ = i.

2.2. First examples.

2.2.1. Quadratic form associated to a self-adjoint. We give as first example
the quadratic form qA associated to a self-adjoint operator A. The form
domain is:

Q(qA) = Q(A) := dom(|A|1/2) =
{
ψ ∈ H, 〈ψ, |A|ψ〉 =

∫
|x|dµψ(x) < +∞

}
,

where µψ denotes the spectral measure associated to A and ψ. The quadratic
form is given by the expectation of A:

qA(ψ) = 〈ψ,Aψ〉 =

∫
xdµψ(x).

2.2.2. Evaluation. A second example is the evaluation function, say at 0 on
smooth functions in S(R) ⊂ L2(R):

ev0(f, g) := f(0)g(0), f, g ∈ S(R).

It is not so well-behaved compared to the q. form coming from a semi-
bounded s.a. operator.

2.3. Closed quadratic forms and Freidrich extension.

1A quadratic form is an algebraic notion. Here the field C has characteristic zero, hence
there is no issue to divide by 4.
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2.4. Closed q. form. Given a semi-bounded q. form q with bound c, we
can define a new inner product 〈·, ·〉q defined as follows:

∀φ, ψ ∈ Q(q), 〈φ, ψ〉q := q(φ, ψ) + (c+ 1)〈φ, ψ〉.

If we pick another bound c for the definition of the inner product we ob-
viously obtain another inner product with equivalent norm. The space
(Q(q), 〈·, ·〉q) is (pre)-Hilbert space, and we call Hq its closure under the

norm ‖ψ‖q :=
√
〈ψ,ψ〉q.

Observe that ‖ψ‖q ≥ ‖ψ‖H.

Definition 3. A semi-bounded q. form q is said to be closed if Hq = Q(q).
Any subset D ⊂ Q(q) which is ‖·‖q-dense is said to be a form core for q.

It is said to be closable if Hq is a subset of H.

Remark 3. 1. Let us be more clear on the closability. Consider the identity
map:

ι :
(Q(q), ‖·‖q) −→ (H, ‖·‖H),

ψ 7→ ψ,

which is continuous as a map between the two above Banach spaces with
norm smaller than 1. Hence it can be uniquely extended to a continuous
map ι̂ : Hq → H and we say that q is closable if ι̂ is injective.

The evaluation ev0 is not closed as we can see that L2(R) ' H ⊕ C.
However the quadratic form coming from a semi-bounded s.a. operator is
closed (see second point below and check yourself !)

2. To check that q is closed we have to see that a ‖·‖q-Cauchy sequence
(ψn) converges to some ψ ∈ Q(q) in the norm ‖·‖q. As this norm controls
‖·‖H, then the sequence is ‖·‖H-Cauchy henceforth converges to some ψ ∈ H
in the norm ‖·‖H.

Thus we obtain that q is closed iff the following holds:

if a sequence (ψn) in Q(q) satisfies ‖ψn−ψ‖H → 0 and q(ψn−ψm) −→
n,m→∞

0,

then ψ ∈ Q(q) and q(ψn − ψ) −→
n

0.

2.5. Theorems.

Theorem 4. If q is semi-bounded and closed, then q corresponds to a unique
s.a. operator A, which can be defined as follows:{

dom(A) :=
{
ψ ∈ Q(q), ∃ψ̃ ∈ H, ∀φ ∈ Q(q), q(φ, ψ) = 〈φ, ψ̃〉

}
,

Aψ := ψ̃.
(1)

“Conversely” if we consider the q. form associated to a positive2 symmet-
ric operator, then we can close it. This gives rise to the Friedrich extension.

Theorem 5. [Friedrich extension] Let A be a positive sym. op. and q the
q. form q(φ, ψ) := 〈φ,Aψ〉, φ, ψ ∈ dom(A). Then

(1) q is closable with closure q̂,

2or semi-bounded. Indeed up to shifting by the bound: A→ A− c we can assume that
A is positive.
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(2) q̂ is the q. form of a unique s.a. op. Â,

(3) Â is a pos. extension of A and inf σ(Â) = infψ∈dom(A)\{0}
〈ψ,Aψ〉
〈ψ,ψ〉 .

(4) Â is the unique s.a. extension of A whose domain is in Q(q̂).

2.6. Proofs.

2.6.1. Proof of Thm 4. Observe that up to replacing q by q − c, we can
assume w.l.o.g. that the bound of q is 0, that is q positive.

As Q(q) is dense in H, then A in (1) is well-defined by Riesz lemma (if

such a ψ̃ exists then it is unique). Then it is clear that 0 is in dom(A).

A is pos. and sym. Let φ, ψ ∈ dom(A). By construction we have:

〈ψ,Aψ〉 = q(ψ) ≥ 0,

hence A is pos. Similarly we have:

〈φ,Aψ〉 def= q(φ, ψ),
q sym.

= q(ψ, φ),

def
= 〈ψ,Aφ〉,
= 〈Aφ,ψ〉.

A is s.a. We take a detour and show that (1 + A)−1 is well-defined, every-
where defined bounded and symmetric. In other words, (1+A)−1 is bounded
and self-adjoint. This implies 1+A s.a. hence A s.a., we can use for instance
the multiplication form of the spectral theorem and check it on L2(R,dµ)
when (1 +A)−1 corresponds to the multiplication by x.

Claim: ran(1 + A) = H This is an application of Riesz lemma in the
Hilbert space (Q(q), ‖·‖q). Indeed, given ψ ∈ H, the following linear form is
bounded:

φ ∈ Q(q) 7→ 〈ψ, φ〉.

By Riesz lemma, there exists ψ̃ ∈ Q(q) such that for all φ ∈ Q(q) we have:

〈ψ, φ〉 = 〈ψ̃, φ〉q = q(ψ̃, φ) + 〈ψ̃, φ〉.

By definition of A, we get ψ̃ ∈ dom(A) and ψ = (1 +A)ψ̃.
Let us now check that 1 +A is injective: it simply follows from positivity

of A and Cauchy-Schwarz inequality. Indeed for ψ ∈ dom(A), we have:

‖(1 +A)ψ‖H ≥ 〈(1 +A)ψ,ψ〉 ≥ ‖ψ‖2H.

Hence (1+A)−1 : (H, ‖·‖H)→ (dom(A), ‖·‖H) is well-defined (and contin-
uous with norm smaller than 1). At last we check that (1+A)−1 is symmet-

ric. Given ψ̃1, ψ̃2 ∈ H we know that there exists uniques ψ1, ψ2 ∈ dom(A)
with

ψ̃j = (1 +A)ψj .
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As Q(q) is dense in H and (1+A)−1, we can assume w.l.o.g. that ψj ∈ Q(q).
A computation yields:

〈(1 +A)−1ψ̃1, ψ̃2〉 = 〈ψ1, (1 +A)ψ2〉,
def
= 〈ψ1, ψ2〉+ q(ψ1, ψ2),

= 〈ψ2, ψ1〉+ q(ψ2, ψ1),

def
= 〈ψ2, (1 +A)ψ1〉,

= 〈ψ̃1, (1 +A)−1ψ̃2〉.

A is unique. Let Ã be another s.a. op. associated to q, in particular we

have dom(Ã) ⊂ Q(q) and for all ψ ∈ dom(Ã) and φ ∈ Q(q) there holds

〈φ, Ãψ〉 = q(φ, ψ). Now if we assume φ ∈ dom(A) ⊂ Q(q), we obtain:

〈φ, Ãψ〉 = q(φ, ψ) = 〈Aφ,ψ〉,

hence Ã extends A. As they are both s.a. they are equal.

2.6.2. Proof of Thm 5.
q is closable. We show that q is closable. As said in Remark 3, we check
that the map ι̂ is injective. Let ψ ∈ Hq (the closure under ‖·‖q) with
ι̂(ψ) = 0. This means that there exists a sequence (ψn)n in dom(A) which is
a ‖·‖q-Cauchy sequence and for which there holds ‖ψn‖H → 0. In particular
(‖ψn‖q)n is bounded by M < +infty.

Let us show ‖ψn‖2q → 0. For n,m ≥ 1, we have:

‖ψn‖2q = 〈ψn, ψn〉q (= 〈ψn, (1 +A)ψn〉),
= 〈ψn, ψn − ψm〉q + 〈ψn, ψm〉q,
= 〈ψn, ψn − ψm〉q + 〈(1 +A)ψn, ψm〉
≤ ‖ψn‖q‖ψn − ψm‖q + ‖(1 +A)ψn‖H‖ψm‖H.

We first take the liminf in m, and get:

‖ψn‖2q ≤ ‖ψn‖q lim inf
m→+∞

‖ψn − ψm‖q + 0.

As (ψn)n is Cauchy for ‖·‖q, by taking the limit n → +∞ we obtain
limn→+∞‖ψn‖2q ≤M × 0 + 0 = 0.

So q is closable and by Thm 4, its closure is associated to a unique Â.

Â extends A. For φ ∈ dom(A) and ψ ∈ dom(Â), we have:

〈Aφ,ψ〉 = q̂[φ, ψ] = 〈φ, Âψ〉, (2)

hence Â extends A.

Uniqueness. Let A1 be a symmetric extension of A with dom(A1) ⊂ Q(q̂).

By replacing A by A1 in (2) we get that Â extends A1. So if A1 is self-adjoint
then they are equal.

Bottom of the spectrum. The formula simply follows from the fact that
dom(A) is ‖·‖q-dense in Q(q̂).
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3. The KLMN theorem

3.1. Statement of the theorem. It is named after Kato, Lions, Lax,
Milgram and Nelson.

Theorem 6. Let A be a positive s.a. operator and β(ψ,ψ) a symmetric q.
form on Q(A) such that there exists 0 < a < 1 and b ∈ R such that for all
ψ ∈ dom(A) there holds:

|β(φ, φ)| ≤ q〈φ,Aφ〉+ b‖φ‖2H.
Then the following holds.

(1) There exists a unique s.a. op C with Q(C) = Q(A) and for all ψ, φ
in the common form domain we have:

qC(φ, ψ) = qA(φ, ψ) + β(φ, ψ).

(2) C is bounded from below by −b and any domain of essential self-
adjointness of A is a form core for qC .

Proof. Define γ(φ, ψ) := qA(φ, ψ) + β(φ, ψ) on Q(A). We have:

γ(φ, φ) ≥ (1− a)qA(φ, φ)− b‖φ‖2H,
hence γ is bounde from below by −b. We claim that γ is already closed. it
suffices to show that ‖·‖qA and ‖·‖γ are equivalent norms on Q(A). As Q(A)
is ‖·‖qA-closed, then it will also be ‖·‖γ-closed.

We have:

(1−a)qA(φ, φ)+(2|b|−b)〈φ, φ〉 ≤ γ(φ, φ)+2|b|〈φ, φ〉 ≤ (1+a)qA(φ, φ)+(1+2|b|)〈φ, φ〉,
which proves the equivalence of the two norms on Q(A).

The statement about domain of self-adjointness follows from the fact that
the graph norm of A on dom(A) controls ‖·‖qA :

〈ψ, (1 +A)ψ〉 ≤ 〈ψ,ψ〉+ 2−1(‖ψ‖2H + ‖Aψ‖2H) ≤ 3/2‖ψ‖2A.
As a domain of self-adjointness is dense (in dom(A)) under the graph norm,
it is dense under ‖·‖qA in Q(A) (because so is dom(A)). �

3.2. Relative form bound. The KLMN theorem leads us to the following
definition.

Definition 4. Let A be a positive s.a. op and B is a s.a. operator.
B is said to be relatively form bounded w.r.t. A with relative bound a > 0

if Q(A) ⊂ Q(B) and if there exists b ∈ R such that:

|qB(φ, φ)| ≤ aqA(φ, φ) + b‖φ‖2H.
If for any a > 0, B is relatively form bounded w.r.t. A with relative bound
a, then B is said to be infinitesimally form bounded w.r.t. A and we write
B Î A.

Mutatis mutandis a similar definition holds for a quadratic form β defined
on Q(A).

Remark 7. It can be shown that if B is infinitesimally operator bounded
w.r.t. A, then it is also infinitesimally form bounded w.r.t. A.

We now give several examples.
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3.3. Examples.

3.3.1. Evaluation. As a first example for the KLMN theorem, we consider
the evaluation ev0 introduced earlier. Itself it is not closable, but using
the Fourier transform in dimension 1, it can be easily check that ev0 is

infinitesimally form bounded w.r.t. − d2

dx2
.

3.3.2. Homogeneous potentials. We recall the Hardy’s inequality on L2(Rd)
with d ≥ 3 which states the following:

∀ψ ∈ H1(Rd),
∫
|ψ(x)|2

|x|2
dx ≤ 4

(d− 2)2

∫
|∇ψ|2 (3)

which implies that |·|−2 is relatively form bounded w.r.t. −∆Rd with relative

bound (d−2)2
4 .

This implies that for all 0 < α < 2, there holds −| · |−α Î −∆. Indeed
for all ε > 0 and x ∈ Rd we have the following operator inequality:

|x|−α ≤ |x|−α(1(|x|≤ε) + 1(|x|>ε)) ≤ ε2−α|x|−2 + ε−α.

If you have never seen Hardy’s inequality, here is one proof.
For d ≥ 3, it suffices to establish it for smooth functions ψ ∈ C∞0 (Rd).

We will extend it to H1(Rd) by density. For such a ψ, let f := |ψ|2.
Observe that on Rd\{0} the divergence of the vector field V(x) := f(x) x

|x|3
is:

[∇·V](x) = 〈∇f(x), x
|x|2 〉+f

[ d

|x|2
−
∑
j

2x2j
|x|4

]
= 〈∇f(x), x

|x|2 〉+ (d−2)
f(x)

|x|2
.

We write Sε the hyper-sphere of radius ε and S = Sd−1 that of radius 1. By
Stokes formula we obtain:

(d− 2)

∫
|x|≥ε

f(x)

|x|2
dx =

∫
|x|≥ε

[∇ ·V](x)dx−
∫
|x|≥ε
〈∇f(x), x

|x|2 〉dx,

= −
∫
y∈Sε

f(y)〈 y
|y|2 , nSε(y)〉dSε(y)−

∫
|x|≥ε
〈∇f(x), x

|x|2 〉dx,

= −
∫
n∈S

f(εn)〈nε , n〉ε
2dS(n)−

∫
|x|≥ε
〈∇f(x), x

|x|2 〉dx.

Taking the limit ε→ 0 yields:

(d− 2)

∫
f(x)

|x|2
dx = −

∫
〈∇f(x), x

|x|2 〉dx,

≤ 2

∫
|∇ψ(x)| |ψ(x)|

|x|
dx.

By cauchy-Schwartz inequality, we obtain:(
(d− 2)

∫
|ψ(x)|2

|x|2
dx
)2
≤ 4

∫
|∇ψ(x)|2dx

∫
|ψ(x)|2

|x|2
dx,

from which we obtain Hardy’s inequality. Observe in fact that we can refine
it: following the proof we realize that we can replace |∇ψ| by |∇|ψ||.
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3.3.3. Rollnik potentials. In dimension d = 3, we introduce the Banach space
R of Rollnik potentials.

R :=
{
V measurable, ‖V ‖2R :=

∫∫
R3×R3

|V (x)||V (y)|
|x− y|2

dxdy < + < infty
}
.

(4)
Let V ∈ R, calling fV the Fourier transform of |V |, we have:

‖V ‖2R =

∫
|V | × |V | ∗ 1

|·|2 ,

=
1

4π

∫
|fV (p)|2

|p|
dp.

Similarly, if we consider V,W ∈ R, we obtain by Cauchy-Schwarz inequality:

‖V +W‖2R ≤
1

4π

∫
(|fV (p)|+ |fW (p)|)2

|p|
dp,

≤ (‖V ‖R + ‖W‖R)2,

which establishes the triangle inequality.
In this course, this class has to be understood as the set of potentials for

which interesting results can be stated with few technicalities.

Remark 8 (L3/2(R3) ⊂ R). Thanks to a special case of the Hardy-Litllewood-
Sobolev inequality [1] which states that the following linear map is continuous

V ∈ L3/2(R3) 7→ V ∗ 1

| · |2
∈ L3(R3),

we get L3/2(R3) ⊂ R.

We claim:

Lemma 9. A (real valued) potential V ∈ R + L∞(R3) is infinitesimally
form bounded w.r.t. −∆R3.

W.l.o.g. it suffices to check it for V ∈ R. We will prove this lemma in a
another part of the lecture dedicated to the study of Rollnik potentials.

We can then derive an analogue of Kato’s theorem on atomic Schrödinger
operators.

Theorem 10. Let N ∈ N and let Vi, Vij be (real-valued) potentials in R +
L∞(R3), 1 ≤ i, j ≤ N . Let

V (x) :=

N∑
i=1

Vi(xi) +
∑

1≤i,j≤N
Vij(xi − xj), x = (x1, . . . , xN ) ∈ R3N .

Then V Î −∆R3N and −∆R3N + V is a well-defined s.a. op with domain
H2(R3N ).
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