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Introduction

Informally speaking, perturbation theory can be considered the study of how operators A and A+B are related when B
can be considered �small� in some way. In the course we have already seen some instances of perturbative results. One
example is the Kato-Rellich theorem, which states

Theorem 1 (Kato-Rellich). Let A : D (A) ⊂ H → H be self-adjoint, B : D (B) ⊂ H → H be symmetric and

D (A) ⊂ D (B). If there exists a < 1 and b ∈ R such that

‖Bϕ‖ ≤ a ‖Aϕ‖+ b ‖ϕ‖ , ∀ϕ ∈ D (A)

then A+B : D (A) ⊂ H → H is self-adjoint.

In this case, the condition that B is small is the statement that ‖Bϕ‖ ≤ a ‖Aϕ‖+ b ‖ϕ‖ holds for all ϕ ∈ D (A) and the
relation this implies between A and A+B is that A+B is self-adjoint on D (A).

Another perturbative result we have seen is the stability of the essential spectrum:

Theorem 2 (Stability of the Essential Spectrum). Let A and A′ be self-adjoint operators on H. If there exists a

z ∈ ρ (A)∩ρ (A′) such that (A− z)−1− (A′ − z)−1 is compact then σess (A) = σess (A
′). In particular, if A′ is of the form

A′ = A+B where B is compact then the conclusion holds.

Here the �smallness� condition is that B is compact, and the relation this implies is that σess (A+B) = σess (A).

In this summary we will present some of the main results on the behaviour of (simple) eigenvalues under a perturbation.

While we will prove a variety of results, perhaps the most interesting single result is the following:

Theorem 3. Let A : D (A) ⊂ H → H be self-adjoint, B : D (B) ⊂ H → H be an operator and D (A) ⊂ D (B). Let

furthermore E0 be an isolated non-degenerate eigenvalue of A, i.e. dist (E0, σ (A) \ {E0}) = 2ε > 0. Assume that an

estimate of the form

‖Bϕ‖ ≤ a ‖Aϕ‖+ b ‖ϕ‖ , ∀ϕ ∈ D (A)

holds for some a, b ∈ R. Then for all β ∈ B0 = B
(
0,
(
a+ (a (|E0|+ ε) + b) ε−1

)−1)
there is exactly one spectral point

E (β) of A+βB : D (A) ⊂ H → H in the ball B (E0, ε). E (β) is a non-degenerate eigenvalue and considered as a function

of β it is analytic on some neighbourhood of 0 contained in B0.

It can be shown that E (β) is in fact analytic on all of B0, see for instance Kato's classic book [1].

Results

This section is a simpli�ed version of the presentation of the material in Reed and Simon's book [2], approximately
corresponding to Theorem XII.5 through Theorem XII.9.

First we recall the de�nition of an analytic bounded operator-valued function:
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De�nition 1. An operator-valued function L (β) : U → L (H) de�ned on an open set U ⊂ C is said to be analytic if the
function

z 7→ 〈ψ,L (β)ϕ〉

is analytic as a complex function for all ϕ, ψ ∈ H.

Recall in particular that for an operator A the resolvent (A− λ)−1 is analytic in λ for all λ ∈ ρ (A).
We will study the perturbation of eigenvalues by studying the perturbation of the associated eigenvectors. Since we do not
know what the eigenvector will be for the perturbed function, we will need to de�ne an appropriate projection operator.
In the self-adjoint case we can de�ne projections using functional calculus, but since we will look at families of the form
A + βB where β is taken from an open complex set this will not su�ce, so we need to extend spectral projections to
general closed operators. We do this by contour integration.

Theorem 4. Let A be a closed operator and let λ0 be an isolated point of σ (A), i.e. there exists an ε > 0 such that

B (λ, ε) ∩ σ (A) = {λ0}. Let C (r) = {λ ∈ C | |λ0 − λ| = r} for some 0 < r < ε and de�ne the operator P ∈ L (H) by

P = − 1

2πi

˛
C(r)

(A− λ)−1 dλ.

Then P has the following properties:

1. P is well-de�ned and is independent of the r chosen.

2. P is a projection, i.e. P 2 = P .

3. P is the projection onto the λ0-eigenspace {ϕ ∈ D (A) | Aϕ = λ0ϕ} of A.

Proof. Since C (r) is compact and (A− λ)−1 analytic we have supλ∈C(r)

(
(A− λ)−1

)
< ∞ so the integral exists as a

Banach space-valued Riemann integral. That it is independent of r follows from the fact that for ϕ, ψ ∈ H we have

〈ψ, Pϕ〉 = − 1

2πi

˛
C(r)

〈
ψ, (A− λ)−1 ϕ

〉
dλ.

By analyticity of (A− λ)−1 we have that λ 7→
〈
ψ, (A− λ)−1 ϕ

〉
is a holomorphic function de�ned on ρ (A), hence if it

has a pole in B (λ0, ε) it must be at λ = λ0, so in fact

〈ψ, Pϕ〉 = i

2π
Res

(〈
ψ, (A− λ)−1 ϕ

〉
, λ0

)
. (1)

That the integral is r-independent then follows from the usual Cauchy integral theorem. Since ϕ, ψ were arbitrary we
conclude that r-independence holds in general. This shows (1).

To show that P is a projection, note that if 0 < r < R < ε then by what we have just shown

P = − 1

2πi

˛
C(r)

(A− λ)−1 dλ = − 1

2πi

˛
C(R)

(A− λ)−1 dλ,

hence using the �rst resolvent identity (A− λ)−1 − (A− µ)−1 = (λ− µ) (A− λ)−1 (A− µ)−1 we can write

(−2πi)2 P 2 =

˛
C(r)

˛
C(R)

(A− λ)−1 (A− µ)−1 dλdµ

=

˛
C(r)

˛
C(R)

1

λ− µ
(A− λ)−1 dλdµ−

˛
C(r)

˛
C(R)

1

λ− µ
(A− µ)−1 dλdµ

=

˛
C(R)

(˛
C(r)

1

λ− µ
dµ

)
(A− λ)−1 dλ−

˛
C(r)

(˛
C(R)

1

λ− µ
dλ

)
(A− µ)−1 dµ.

Since r < R the �rst (nested) integral is 0 while the second one equals 2πi, hence
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(−2πi)2 P 2 = −2πi
˛
C(r)

(A− µ)−1 dµ = (−2πi)2 P.

This shows (2). Finally we show that ran (P ) = {ϕ ∈ D (A) | Aϕ = λ0ϕ}. First, let Aϕ = λϕ. Then

P (ϕ) = − 1

2πi

˛
C(r)

(A− λ)−1 ϕdλ = − 1

2πi

˛
C(r)

(λ0 − λ)−1 ϕdλ =

(
1

2πi

˛
C(r)

1

λ− λ0
dλ

)
ϕ = ϕ,

so {ϕ ∈ D (A) | Aϕ = λ0ϕ} ⊂ ran (P ). On the other hand, by the identity A (A− λ)−1 = 1 + λ (A− λ)−1, we have for
any ϕ ∈ H that

APϕ = − 1

2πi

˛
C(r)

A (A− λ)−1 ϕdλ = − 1

2πi

˛
C(r)

(
1 + λ (A− λ)−1

)
ϕdλ = − 1

2πi

˛
C(r)

λ (A− λ)−1 ϕdλ,

where we used that
¸
C(r) 1 dλ = 0. Using equation (1) we see that for any ψ ∈ H

〈ψ,APϕ〉 = i

2π
Res

(
λ
〈
ψ, (A− λ)−1 ϕ

〉
, λ0

)
= λ0

i

2π
Res

(〈
ψ, (A− λ)−1 ϕ

〉
, λ0

)
= λ0 〈ψ, Pϕ〉 = 〈ψ, λ0Pϕ〉 ,

so by Riesz lemma

APϕ = λ0Pϕ,

hence ran (P ) ⊂ {ϕ ∈ D (A) | Aϕ = λ0ϕ}. This concludes the proof.

Remark. In the above theorem we assume that B (λ, ε) ∩ σ (A) = {λ0}, but it is clear that everything still holds if
B (λ, ε) ∩ σ (A) = ∅ with the conclusion that P = 0. In addition, even if we do not know that C (r) surrounds a spectral
point then if dim (Ran (P )) = 1 it must in fact surround an eigenvalue by (2) and (3).

Before we de�ne our main object of study, we introduce a new de�nition:

De�nition 2. A vector-valued function ϕ (β) : U → H de�ned on an open set U ⊂ C is said to be analytic if

β 7→ 〈ψ,ϕ (β)〉

is analytic as a complex function for all ψ ∈ H.

Note in particular that if L (β) : U → L (H) is analytic then L (β)ϕ : U → L (H) is analytic for any ϕ ∈ H.
Now we can extend a notion of analyticity to unbounded operators:

De�nition 3. Let U ⊂ C be a connected, open set and for all β ∈ U let T (β) be a closed operator with ρ (T (β)) 6= ∅.
We say that T (β) is an analytic family (of type A) if

1. D (T (β)) = D is independent of β.

2. T (β)ϕ : U → H is analytic for all ϕ ∈ D.

We will be focusing on linear analytic families of type A, i.e. those that are of the form A+ βB for some operators A and
B. We have a result characterizing such families:

Theorem 5. Let A : D (A) ⊂ H → H be a closed operator with ρ (A) 6= ∅. Let B : D (B) ⊂ H → H be another operator

and de�ne A+ βB on D (A)∩D (B). Then A+ βB is an analytic family of type A on an open set U ⊂ C containing 0 if

and only if D (A) ⊂ D (B) and there exists a, b > 0 such that

‖Bϕ‖ ≤ a ‖Aϕ‖+ b ‖ϕ‖ , ∀ϕ ∈ D (A) . (∗)
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Proof. First assume that A+ βB is an analytic family of type A. Since the domain is independent of β we have that

D (A) = D (A+ βB) = D (A) ∩ D (B)

hence D (A) ⊂ D (B). Now, since A is closed D = D (A) is a Banach space with the graph norm

‖ϕ‖A = ‖ϕ‖+ ‖Aϕ‖ , ϕ ∈ D (A) .

Let β be so small that both β and −β are in U . Then the graphs of A+βB and A−βB are closed in H×H by assumption,
hence also in D ×H (which has a stronger topology). Then, by the closed graph theorem,

‖(A+ βB)ϕ‖ ≤ a ‖ϕ‖A , ‖(A− βB)ϕ‖ ≤ a′ ‖ϕ‖A , ∀ϕ ∈ D (A)

hence for all ϕ ∈ D (A)

‖Bϕ‖ =

∥∥∥∥ 1

2β
((A+ βB)ϕ+ (A− βB)ϕ)

∥∥∥∥ ≤ 1

2 |β|
(‖(A+ βB)ϕ‖+ ‖(A− βB)ϕ‖)

≤ a+ a′

2 |β|
‖ϕ‖A =

a+ a′

2 |β|
(‖Aϕ‖+ ‖ϕ‖)

so we have an inequality of the form (∗).
Now assume that D (A) ⊂ D (B) and that (∗) holds. Then D (A+ βB) = D (A)∩D (B) = D (A) is constant by de�nition
and that (A+ βB)ϕ is analytic for all ϕ ∈ D (A) is obvious, since 〈ψ, (A+ βB)ϕ〉 = 〈ψ,Aϕ〉+ 〈ψ,Bϕ〉β is linear for all
ψ ∈ D (A), hence certainly analytic, so all that remains to be shown is closedness and the resolvent condition. For the
closedness, observe that for all ϕ ∈ D (A)

‖Aϕ‖ ≤ ‖(A+ βB)ϕ‖+ |β| ‖Bϕ‖ ≤ ‖(A+ βB)ϕ‖+ |β| a ‖Aϕ‖+ |β| b ‖ϕ‖ ,

hence for |β| < a−1

‖Aϕ‖ ≤ 1

1− a |β|
‖(A+ βB)ϕ‖+ |β| b

1− a |β|
‖ϕ‖ , ∀ϕ ∈ D (A) .

This implies that ‖·‖A is weaker than ‖·‖A+βB for |β| < a−1.

Now, let (ϕn)n∈N ⊂ D (A) be such that ϕn → ϕ ∈ H as n → ∞ (in ‖·‖) and ((A+ βB)ϕn)n∈N also converges, hence is
Cauchy. By the above inequality the sequence (Aϕn)n∈N is then also Cauchy, hence by closedness of A we conclude that
ϕ ∈ D (A) and Aϕn → Aϕ as n → ∞. Then also (A+ βB)ϕn → (A+ βB)ϕ as n → ∞, since (∗) assures that B is
continuous in the graph norm of A, so we conclude that A+ βB is closed for all |β| < a−1.

Finally we must show that ρ (A+ βB) is non-empty for |β| small enough. Let λ ∈ ρ (A) and write

A+ βB − λ =
(
1 + βB (A− λ)−1

)
(A− λ) .

To show that λ ∈ ρ (A+ βB) it is then su�cient to show that we can choose β such that
∥∥∥βB (A− λ)−1

∥∥∥ < 1, by

Neumann series. Using (∗) we estimate for ϕ ∈ H

∥∥∥B (A− λ)−1 ϕ
∥∥∥ ≤ a

∥∥∥A (A− λ)−1 ϕ
∥∥∥+ b

∥∥∥(A− λ)−1 ϕ∥∥∥ ≤ a ‖ϕ‖+ a |λ|
∥∥∥(A− λ)−1 ϕ∥∥∥+ b

∥∥∥(A− λ)−1 ϕ∥∥∥
≤

(
a+ (a |λ|+ b)

∥∥∥(A− λ)−1∥∥∥) ‖ϕ‖
where we used the identity A (A− λ)−1 = 1+λ (A− λ)−1. We see that demanding |β| <

(
a+ (a |λ|+ b)

∥∥∥(A− λ)−1∥∥∥)−1
does the job, so we are done.

When A is self-adjoint we have the following corollary:
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Corollary 1. Let A : D (A) ⊂ H → H be self-adjoint, B : D (B) ⊂ H → H be an operator and D (A) ⊂ D (B). If there

exists a, b ∈ R such that

‖Bϕ‖ ≤ a ‖Aϕ‖+ b ‖ϕ‖ , ∀ϕ ∈ D (A)

then A+ βB : D (A) ⊂ H → H is an analytic family of type A for all β ∈ B
(
0, a−1

)
.

Proof. The corollary follows from the fact that in the second half of the proof above we only had to (possibly) shrink the
domain of A+ βB from B

(
0, a−1

)
to ensure a non-empty resolvent set. For a self-adjoint A we know that iλ ∈ ρ (A) for

all λ ∈ R\ {0}, so we can do as in the proof of the Kato-Rellich theorem and write

(A+ βB − iλ) =
(
1 + βB (A− iλ)−1

)
(A− iλ)

followed by the estimates (recalling that for self-adjoint A we also have the estimate
∥∥∥A (A− iλ)−1 ϕ

∥∥∥ ≤ ‖ϕ‖)∥∥∥βB (A− iλ)−1 ϕ
∥∥∥ ≤ a |β|∥∥∥A (A− iλ)−1 ϕ

∥∥∥+ b |β|
∥∥∥(A− iλ)−1 ϕ∥∥∥ ≤ a |β| ‖ϕ‖+ b |β|

|λ|
‖ϕ‖ , ϕ ∈ D (A) ,

hence we can establish that A+ βB has a non-empty resolvent set by enlarging |λ| instead of shrinking |β|.

Remark. First, note that if B is also symmetric then A+ βB is also self-adjoint for β ∈ B
(
0, a−1

)
∩ R by Kato-Rellich.

Secondly, if B is in�nitesimally bounded with respect to A then A+ βB is an analytic family for all β ∈ C.

Our strategy for studying the eigenvalues of an analytic family A + βB will be to use our spectral projection to de�ne
a β-dependent projection P (β) using Theorem 4, and then formulate eigenvectors and eigenvalues in terms of P (β). In
order to do this, however, we need to make sure that we can control β in such a way that the spectrum σ (A+ βB) stays
away from the integration contour that de�nes P (β). This we turn to now.

Theorem 6. Let A + βB be an analytic family of type A. Let λ0 ∈ σ (A) be such that dist (λ0, σ (A) \ {λ0}) = 2ε > 0.
Then there exists an r > 0 such that the set

C (ε) = {λ ∈ C | |λ0 − λ| = ε}

obeys dist (C (ε) , σ (A+ βB)) > 0 for all β ∈ B (0, r). Furthermore, if A is self-adjoint then one can take

r =

(
a+

a (|λ0|+ ε) + b

ε

)−1
.

Proof. As we saw in the last part of Theorem 5 we have by writing

A+ βB − λ =
(
1 + βB (A− λ)−1

)
(A− λ)

the conclusion that λ ∈ ρ (A+ βB) if
∥∥∥βB (A− λ)−1

∥∥∥ < 1. We need to show that we can ensure this for all λ ∈ C (ε) by
a single constraint on β. In Theorem 5 we also found the estimate∥∥∥B (A− λ)−1

∥∥∥ ≤ a+ (a |λ|+ b)
∥∥∥(A− λ)−1∥∥∥ , λ ∈ ρ (A) .

In order to ensure that dist (C (ε) , ρ (A+ βB)) > 0 we consider instead of C (ε) the set

B (C (ε) , δ) = {λ ∈ C | dist (C (ε) , λ) ≤ δ}

for δ < ε. Since B (C (ε) , δ) is compact we must have supλ∈B(C(ε),δ)

∥∥∥(A− λ)−1∥∥∥ = Cδ <∞, so we can estimate∥∥∥B (A− λ)−1
∥∥∥ ≤ a+ Cδ (a |λ|+ b) ≤ a+ Cδ (a (|λ0|+ ε+ δ) + b) , λ ∈ B (C (ε) , δ)

independently of λ so taking |β| < (a+ Cδ (a (|λ0|+ ε+ δ) + b))
−1

ensures that dist (C (ε) , ρ (A+ βB)) ≥ δ. Noting that
Cδ ≤ Cδ′ if δ ≤ δ′, we can take δ to 0 and set
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r = (a+ C0 (a (|λ0|+ ε) + b))
−1

which ensures that dist (C (ε) , σ (A+ βB)) > 0 for any β ∈ B (0, r).

The claim regarding self-adjoint A is due to the fact that by functional calculus
∥∥∥(A− λ)−1∥∥∥ = dist (σ (A) , λ)

−1
so we

know that C0 = ε−1 by de�nition of ε.

Remark. Since a−1 ≥ r = (a+ C0 (a (|λ0|) + b))
−1

we still have analyticity of A+ βB on B (0, r) in the self-adjoint case.

Before we can prove our main result on analyticity of the simple, non-degenerate eigenvalues of an analytic family A+βB
we need a result which will ensure us that we actually have eigenvectors. First, a preliminary lemma:

Lemma 1. If P, Q ∈ L (H) are two �nite-rank projections and dim (Ran (P )) 6= dim (Ran (Q)) then ‖P −Q‖ ≥ 1.

Proof. Assume dim (Ran (P )) < dim (Ran (Q)). Then P |
Ran(Q) : Ran (Q) → Ran (P ) must have a non-trivial kernel by

dimensionality. Let x ∈ Ran (Q) be a (non-zero) element of this kernel. Then

Px = 0, Qx = x

hence ‖(P −Q)x‖ = ‖x‖ so ‖P −Q‖ ≥ 1.

Lemma 2. If P (β) : U → L (H) is a continuous projection-valued function of �nite rank de�ned on a connected set

U ⊂ C then dim (Ran (P (β))) is constant in β.

Proof. Observe that given any β′ ∈ U we can by the above lemma �nd an open ballB (β′, r) ⊂ U such that dim (Ran (P (β)))
is constant on B (β′, r) - indeed, by continuity we can choose r > 0 such that |β′ − β| < r implies ‖P (β′)− P (β)‖ < 1,
hence by the above lemma dim (Ran (P (β))) = dim (Ran (P (β′))).

Now choose some β0 ∈ U and de�ne the set V by

V = {β ∈ U | dim (Ran (P (β))) = dim (Ran (P (β0)))} .

On one hand V is open since for any β ∈ V we can �nd an open ball containing β which is contained in V . By the same
argument V is also closed, however, since given β′ /∈ V we can also �nd a ball containing β′ which is disjoint from V .

Since V is both open, closed and nonempty (clearly β0 ∈ V ) we conclude by connectedness that V = U , hence that
dim (Ran (P (β))) is constant on U .

Now we are ready for our main result:

Theorem 7. Let A+βB be an analytic family. Let E0 be an isolated non-degenerate eigenvalue of A, i.e. dist (E0, σ (A) \ {E0}) =
2ε > 0, with eigenvector ϕ0. Then there exists a ball B0 around 0 such that for all β ∈ B0 the following holds:

1. There is exactly one point E (β) ∈ σ (A+ βB) in the ball B (E0, ε) and E (β) is an isolated non-degenerate eigenvalue

of A+ βB.

2. There exists a neighbourhood U ⊂ B0 around 0 such that E (β) : U → C is analytic and there exists an analytic

eigenvector ϕ (β) : U → H such that (A+ βB)ϕ (β) = E (β)ϕ (β) holds for all β ∈ U .

Furthermore, if A is self-adjoint then one can take B0 = B
(
0,
(
a+ (a (|E0|+ ε) + b) ε−1

)−1)
.

Proof. By Theorem 6 we can �nd a ball B0 around 0 such that the contour C = {λ ∈ C | |E0 − λ| = ε} has a positive
distance to σ (A+ βB) for all β ∈ B0. By Theorem 4 we can then de�ne the projection

P (β) = − 1

2πi

˛
C
(A+ βB − λ)−1 dλ, β ∈ B0.

If we take B0 to be as in Theorem 6 we have the expansion

(A+ βB − λ)−1 = (A− λ)−1
∞∑
k=0

(−1)k
(
B (A− λ)−1

)k
βk, β ∈ B0,
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which can be obtained from the second resolvent identity by writing

(A+ βB − λ)−1 = (A− λ)−1 − β (A+ βB − λ)−1B (A− λ)−1

and then recursively inserting the right-hand side into itself, as in

(A+ βB − λ)−1 = (A− λ)−1 − β
(
(A− λ)−1 − β (A+ βB − λ)−1B (A− λ)−1

)
B (A− λ)−1

= (A− λ)−1
(
1− βB (A− λ)−1

)
+ β2 (A+ βB − λ)−1

(
B (A− λ)−1

)2
= (A− λ)−1

(
1− βB (A− λ)−1 + β2

(
B (A− λ)−1

)2)
− β3 (A+ βB − λ)−1

(
B (A− λ)−1

)3
.

We now see that P (β) is in fact analytic in β, as we can write P (β) as a power series in β (since the integration is over
a compact set, there is no problem regarding convergence):

P (β) = − 1

2πi

∞∑
k=0

(−1)k
(˛
C
(A− λ)−1

(
B (A− λ)−1

)k
dλ

)
βk.

Since E0 is non-degenerate, dim (Ran (P (0))) = 1, and so by Lemma 2 we in fact have dim (Ran (P (β))) = 1. By Theorem
4 we conclude that there is exactly one spectral point E (β) enclosed by C and that this is a an eigenvalue of A+ βB for
β ∈ B0. This shows (1).

Now de�ne ϕ (β) by

ϕ (β) = P (β)ϕ0, β ∈ B0.

Since P (β) is analytic on B0 so is ϕ (β). In particular then

〈ϕ0, ϕ (β)〉 = 〈ϕ0, P (β)ϕ0〉

is an analytic function in β. Since 〈ϕ0, ϕ (0)〉 = 〈ϕ0, ϕ0〉 = ‖ϕ0‖2 6= 0 this implies that ϕ (β) 6= 0 for β on some
neighbourhood U of 0.

Since P (β) projects onto the E (β)-eigenspace of A+ βB we see that ϕ (β) : U → H is our desired analytic eigenvector.

What remains to be shown is that E (β) is analytic on U . In the �usual� case of symmetric A and B this is particularly
easy, since

E (β) =
〈ϕ0, E (β)ϕ (β)〉
〈ϕ0, ϕ (β)〉

=
〈ϕ0, (A+ βB)ϕ (β)〉

〈ϕ0, ϕ (β)〉
=
〈Aϕ0, ϕ (β)〉
〈ϕ0, ϕ (β)〉

+ β
〈Bϕ0, ϕ (β)〉
〈ϕ0, ϕ (β)〉

= E0 + β
〈Bϕ0, ϕ (β)〉
〈ϕ0, ϕ (β)〉

,

and that the right-hand side is analytic is clear since ϕ (β) is analytic and 〈ϕ0, ϕ (β)〉 6= 0 for β ∈ U . In the general case,
however, we have to formulate it in a somewhat awkward fashion by writing

(E (β)− E0 − ε)−1 = (E (β)− E0 − ε)−1
〈ϕ0, ϕ (β)〉
〈ϕ0, ϕ (β)〉

=

〈
ϕ0, (A+ βB − E0 − ε)−1 P (β)ϕ0

〉
〈ϕ0, ϕ (β)〉

.

By considering power series it can be shown that the composition of two analytic operator-valued functions is also analytic,
hence the right-hand side is analytic, and so by isolating E (β) we conclude that this is also analytic (at least on some
ball around 0 where this inversion is valid).

Remark. As long as some care is taken regarding the root one can instead de�ne ϕ (β) = 〈ϕ0, P (β)ϕ0〉−
1
2 P (β)ϕ0, which

has the property that it is normalized for β such that A+ βB is self-adjoint.
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