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Consider an atom with nuclear charge Z. Neutral atoms with a number of electrons
equal to Z form stable systems. An interesting question to ask is: How many electrons
can a nucleus maximally bind to form a stable system? In other words, to what maximum
(negative) charge number can an atom ionize by binding additional electrons and still
form a stable system?

Experimental data shows that the electron affinity is positive for most of the elements
([5] gives data and large number of references for these). The electron affinity measures
the energy difference between the initial and final state in the process of “adding” an
electron to an atom to form a negatively charged ion. It thus seems that most nuclei
actually can bind Z + 1 electrons. It might even be possible to form double negatively
charged stable ions and the guess is that the maximal number of electrons a nucleus can
bind Nmax is bounded by Z + 1 or possibly Z + 2.
Though strongly believed to be true, this statement remains an unproven claim on

the level of a mathematical description of quantum theory. It is sometimes referred to
as the ionization conjecture (cf. [3]) and despite activity in this research question for
some decades, there is no rigorous proof for this conjecture derived from first principles
of quantum mechanics.

Yet, progress has been made in this and related questions and in the following a short
and simple proof as given by Lieb in 1984 [2] and showing that Nmax ≤ 2Z + 1 for all
Z > 0 is presented. For a long time this was the best known rigorous result, not using any
approximation models (such as Thomas-Fermi or Hartree-Fock theory) and first in 2011
Nam improved Lieb’s upper bound for Z ≥ 6 [3] by showing that Nmax ≤ 1.22Z + 3Z1/3.

1 The setting
We seek, at first, a more formal way for posing the question and start with a model for a
classical nucleus of charge Z > 0 with a number N non-relativistic electrons interacting
with each other and the charged nucleus via a Coulomb interaction. As a model in
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quantum mechanics it is described by the Hamiltonian

HN,Z =
N∑
i=1

(
−1

2∆i −
Z

|xi|

)
+

∑
1≤i<j≤N

1
|xi − xj|

, (1)

which acts on the space of totally antisymmetric functions ∧N(L2(R3))1, that is, the
space of square-integrable functions of 3N variables ψ for which

ψ(x1, . . . , xN) = sgn(σ)ψ(xσ(1) . . . xσ(N)) (2)

is true for any of permutation σ of the variables x1, . . . , xN ∈ R3. It is the projection
of the N -fold tensor product of one-particle spaces L2(R3) to the subspace of functions
for which (2) holds, reflecting the antisymmetric nature of fermions related to the Pauli
exclusion principle.

What actually is needed in the proof for maximum ionization is the symmetry of the
absolute square of the wave functions, i.e.

|ψ(x1, . . . , xN)|2 =
∣∣∣ψ(xσ(1) . . . xσ(N))

∣∣∣2 (3)

which also holds in the bosonic case when (2) is satisfied without taking into account the
sign of the permutation. The proof thus is valid for fermions as well as bosons.
The ground state energy of the system is obtained by minimising the expectation of

the Hamiltonian, i.e. by
E(N,Z) = inf

‖ψ‖=1
〈ψ,HN,Zψ〉. (4)

In fact, this is equivalent to defining the ground state energy as the infimum of the
spectrum, EN,Z = inf σ(HN,Z).

In general the ground state energy of a Hamiltonian neither has to be finite nor to be
an eigenvalue but if so, then we call the associated eigenfunction a ground state.

In the specific case of our atomic model, HN,Z is indeed bounded from below. By the
Min-Max Theorem (see e.g. Chapter 4.4 in [4]) we then already know that EN,Z is either
an eigenvalue with finite multiplicity of HN,Z or it is the bottom of the essential spectrum.

We now define what we mean by a bound system:

Definition 1. We say the atomic system of N electrons is bound if the binding condition

E(N,Z) < E(N − 1, Z) (5)

is satisfied.

The question we pose is: what is the maximum number Nmax such that (5) is still
satisfied?

1For simplicity we are neglecting the spin of the electrons here which, however, is easy to include by
letting HN,Z act on L2(R3)⊗ C2.
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Remark.

1. It was shown by Zhislin ([6]) that binding occurs at least if N < Z + 1. So asking
about the maximum number is a valid question.

2. Heuristically we make the observation that E(N,Z) ≤ E(N − 1, Z) is always true,
simply because we can place an additional particle with arbitrarily small kinetic en-
ergy arbitrarily far away from the nucleus and other electrons. Mathematically this
means we can find a Weyl sequence {ψn} such that ‖(HN,Z − E(N − 1, Z))ψn‖ → 0
as n→∞. Hence, E(N − 1, Z) is then in the spectrum of HN,Z and gives an upper
bound to the ground state energy.

Indeed, the last point we could also directly conclude from the so-called HVZ theorem
(e.g. Chapter 11.2 in [4]) which states that the essential spectrum is exactly given by

σess = [E(N − 1, Z),∞). (6)

But the theorem together with the Min-Max Theorem allows for more conclusions:
namely, if binding occurs then the ground state energy E(N,Z) is an isolated eigenvalue
with finite multiplicity.

The following picture illustrates the different situtations when binding and no binding
occurs, respectively. If there is binding, then there must exist eigenvalues below the
essential spectrum (indicated by dots) of which the lowest one is the ground state energy.
In the other case, the lowest point of the spectrum lies at E(N − 1, Z), the minimum of
the essential spectrum:

σ(HN,Z) for binding

σ(HN,Z) for no binding

σess(HN,Z)

σess(HN,Z)

[
E(N−1,Z)

E(N−1,Z)
[

2 Lieb’s upper bound for ionization
This section presents Lieb’s proof for the upper bound on the maximum number of
electrons a nucleus can bind, Nmax < 2Z + 1.
The proof is simple and uses the fact, that E(N,Z) is an eigenvalue of HN,Z along

with the following lemma. We state and prove it for very convenient conditions which
allow to rewrite terms in a suitable way without having to dive into complicated details.
The Lemma is proven in Lieb’s paper ([2], in Appendix A for more general cases). Indeed,
it should be possible to relax the assumptions to f ∈ H1(R3) (cf. [3]).
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Lemma 2. Let f ∈ H2(R3). Assume that g defined by g(x) := f(x)|x| is in H1(R3) and
|x|f̄∆f is L1(R3).
Then the inequality

Re〈|x|f,−∆f〉 ≥ 0 (7)

holds.
Proof. We calculate by using partial integration

− Re
∫
R3
ḡ(x)∆

[
g(x) 1
|x|

]
dx

= Re
∫
∇ḡ(x)∇(g(x) 1

|x|
)dx

= Re
∫
∇ḡ(x)

[
1
|x|
∇g(x) + g(x)∇ 1

|x|

]
dx

=
∫ 1
|x|
|∇g|2 dx+ 1

2∇
1
|x|

[g(x)∇ḡ(x) + ḡ(x)∇g(x)] dx

=
∫ 1
|x|
|∇g|2 dx+ 1

2

∫
∇ 1
|x|
∇ |g(x)|2 dx

=
∫ 1
|x|
|∇g|2 dx− 1

2

∫
|g(x)|2∆ 1

|x|
dx

(8)

In the last step we understand the second term in a distributional sense and use
that ∆ 1

|x| = −Cδ. Since f ∈ L2 we have g(0) = 0 and the second term vanishes. The
remaining term is > 0.

We now state and prove the following theorem (following Lieb’s [2] proof and Nam’s
presentation of it [3]):
Theorem 3. Let HN,Z be given as above. Assume E(N,Z) is an eigenvalue of HN,Z

with corresponding normalised eigenfunction ψN,Z. Then N < 2Z + 1.
Proof. We start with the Schrödinger equation

(HN,Z − E(N,Z))ψN,Z = 0, (9)

which we multiply by |xN |ψN,Z to obtain

0 = 〈|xN |ψN,Z , (HN,Z − E(N,Z))ψN,Z〉. (10)

We can split the Hamiltonian into a system with N − 1 electrons and contributions from
the Nth electron:

HN,Z =
n−1∑
i=1

(
−1

2∆i −
Z

|xi|

)
+

∑
1≤i<j≤N−1

1
|xi − xj|︸ ︷︷ ︸

HN−1,Z

+
(
−1

2∆N −
Z

|xN |

)
+

N−1∑
j=1

1
|xj − xN |

.

(11)
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Hence we have three terms that sum up to zero:

〈|xN |ψN,Z , (HN−1,Z − E(N,Z))ψN,Z〉

+ 1
2〈|xN |ψN,Z ,−∆NψN,Z〉

+
〈
ψN,Z ,

−Z +
N−1∑
j=1

|xN |
|xj − xN |

ψN,Z
〉

= 0.

(12)

Using the fact that HN,Z does not act on the variable xN we estimate for the first term:

〈|xN |ψN,Z , (HN−1,Z − E(N,Z))ψN,Z〉

=
∫
R3
|xN |

∫
R3(N−1)

ψ̄N,Z(x1, . . . , xN)(HN−1,Z − E(N,Z))ψN,Z(x1, . . . , xN)dx1 . . . dxN−1dxN

=
∫
R3
|xN |〈ψN,Z(·, xN), (HN,Z − E(N,Z))ψN,Z(·, xN)〉L2(R3(N−1))

≥
∫
R3
|xN |(E(N − 1, Z)− E(N,Z))‖ψN,Z‖2

L2(R3(N−1))dxN .
(13)

But since E(N − 1, Z) ≥ E(N,Z) this is obviously non-negative.
For the second term of (12), noting tht ψN,Z is an eigenfunction, we can use Lemma 1

to conclude that also this term is ≥ 0.
Hence, the last term in (12) must be non-positive. By the symmetry (3) of |ψN,Z |2, we

have an invariance under exchanging xN with any other variable xj, j 6= i and we can
rewrite the sum in this expression by〈

N−1∑
j=1

|xN |
|xj − xN |

〉
=
〈

1
N

N∑
i=1

∑
j 6=i

|xi|
|xj − xi|

〉
, (14)

where the brackets indicate an evaluation within the scalar product between ψN,Z as in
(12). This can be further rewritten as
〈

1
N

N∑
i=1

∑
j>i

|xi|
|xj − xi|

+
∑
j<i

|xi|
|xj − xi|

〉 =
〈

1
N

N−1∑
i=1

∑
j>i

|xi|
|xj − xi|

+
∑
j>i

|xj|
|xi − xj|

〉 ,
(15)

and the condition for the third term to be non-negative now reads:
〈
ψN,Z ,

−Z + 1
N

∑
1≤i<j≤N

|xi|+ |xj|
|xi − xj|

ψN,Z
〉
≤ 0 (16)

5



Then from |xi|+ |xj| ≥ |xi − xj| it follows:

1
N

∑
1≤i<j≤N

|xi|+ |xj|
|xi − xj|

≥ 1
N

∑
1≤i<j≤N

1 = N − 1
2 . (17)

Since equality for the triangle inequality only holds on a set of measure zero in R3N the
inequality in (17) holds strictly almost everywhere. Hence,

Z >
N − 1

2 (18)

and thus
N < 2Z + 1. (19)
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