
THE HARTREE-FOCK MODEL

1. Introduction

System of interacting electrons. We now study the system of N electrons in the presence
of an external potential (due to static nuclei) and with a Coulomb interaction. The
corresponding Hamiltonian (in appropriate units) is what we called1 atomic or molecular
Hamiltonians:

HN =

N∑
j=1

(
−∆xj + V (xj)

)
+

∑
1≤i<j≤N

1

|xi − xj |
, (1)

where V takes the form of:

V (x) = −
M∑
m=1

Zm
|x−Rm|

, Zm > 0, Rm ∈ R3. (2)

In the appropriate units, we must think of V as (−1 times) the electrostatic potential

created by M positive charges Zm > 0 located at Rm ∈ R3. We write Z :=
∑N

j=1 Zm
the total charge of the nuclei.

Several remarks must be made. First, so far we have been considering systems of
distinguishable particles of the same kind. This lead to considering tensor products of
the Hilbert space of one particle. Electrons however are indistinguishable particles that
must satisfy the Pauli principle. That is two electrons cannot be in the same state. It is
implemented analytically by considering the Hilbert space of antisymmetrical functions,
or equivalently, by considering wedge products of the Hilbert space of one particle.

Secondly, and as we did throughout the lecture, we consider for simplicity spinless
particles, and we only take into account electrostatic interaction, hence the form of the
Hamiltonian HN , and the Hilbert space of one particle L2(R3).

Approximations. We thus consider such a system of interacting electrons. A relevant
problem for instance is to get an estimate on the ground state energy, or to study prop-
erties of the ground state. Still, even for N of order – say – 20, this is a difficult problem
(from a computational point of view). Approximation models have been introduced to
obtain partial answers.

In this part, we will consider the Hartree-Fock approximation which consists in re-
stricting states to the set TN of so-called Slater determinants. We will then study the
corresponding minimization problem:

ENHF := inf
ψ∈TN∩dom(HN ),

‖ψ‖=1

〈ψ,HNψ〉. (3)

Having the min-max principle in mind, the Hartree-Fock energy ENHF is larger than
the ground state energy. We will prove a theorem due to Lieb and Simon [2], which
states2 that (3) admits a minimizer when N < Z + 1.

1atomic for M = 1.
2The same method presented during the seminar ensures us that if N ≥ 2Z + 1, then (3) has no

minimizers.
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2 THE HARTREE-FOCK MODEL

From a mathematical point of view, the minimization problem has the following
features.

(1) It is non-linear: the energy functional is not linear w.r.t. the variable (here the
wave function).

(2) It is a problem under constraint (the restriction to Slater determinants).
(3) It is locally compact on R3: minimizing sequences are bounded in the H1-norm

(see below for the reason of the name).

To solve it, we will use techniques of calculus of variations. We will also uses three
results which are interesting by themselves.

(1) The fact that H1(R3) is compactly injected into L2
loc(R3) (special case of the

theorem of Rellich-Kondrachov).
(2) Newton’s theorem which states that for a radially symmetric Borel measure µ

in R3 we have:

µ ∗ 1

| · |
(x) :=

∫
R3

µ(dy)

|x− y|
,

=
1

|x|

∫
y:|y|≤|x|

µ(dy) +

∫
y:|y|>|x|

µ(dy)

|y|
.

(3) For a Borel signed Borel measure of finite total variation µ (that is µ = µ+−µ−
with µ+, µ− finite Borel measures), if µ(R3) = µ+(R3) − µ−(R3) < 0, then
the self-adjoint operator −∆+ < µ ∗ 1

|·| has infinite discrete spectrum below its

essential spectrum [0,+∞).

We first properly state the problem (we define antisymmetrical functions and Slater
determinants and the Hartree-Fock functional), and then show the announced theorem.

2. Antisymmetrical functions and Slater determinants

2.1. The space L2
a(R3N ). Consider the space L2(R3N) ' L2(R3)N . Recall that we

write x = (x1, . . . , xN ) ∈ R3N where xj ∈ R3, 1 ≤ j ≤ N . The space L2
a(R3N ) of

antisymmetric function is the closed3 subspace of L2(R3N ) defined by:

L2
a(R3N ) :=

{
ψ ∈ L2(R3N ), ∀ 1 ≤ i < j ≤ N, there holds a.e.

ψ(x1, . . . , xi, . . . , xj , . . . , xN ) = −ψ(x1, . . . , xj , . . . , xi, . . . , xN )
}
.

We will prove below that subspace L2
a(R3N ) is isometric to ∧1≤i≤NL

2(R3).
A legitimate question is whether HN of (1) is well-defined on L2

a(R3N ) as an un-
bounded self-adjoint operator. The answer is yes, and this is due to the fact that HN

acts symmetrically on the N variables x1, . . . , xN ∈ R3.

Hence HN with domain H2(R3N )∩L2
a(R3N ) =: H2

a(R3N ) is a well-defined self-adjoint
operator on L2

a(R3N ): if ψ ∈ H2
a(R3N ), then HNψ is also in L2

a(R3N ).
By our study on Slater determinants below, it will be obvious that H2

a(R3N ) is dense
in L2

a(R3N ).

Similarly its form domain is H1
a(R3N ) := H1(R3N ) ∩ L2

a(R3N ).

3the antisymmetry condition is continuous w.r.t. the L2-norm.
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2.2. Slater determinants. There is a special class of vectors in L2
a(R3N ) called Slater

determinants, which come directly from the construction of the wedge product.
Consider a family (ψj)1≤j≤N . The wedge product ψ1 ∧ · · · ∧ ψN ∈ L2

a(R3N ) of the
ψj ’s is defined as follows,

ψ1 ∧ · · · ∧ ψN (x) :=
1√
N !

det
(
(ψi(xj))1≤i,j≤N

)
,

=
1√
N !

∑
σ∈SN

ε(σ)
∏

1≤i≤N
ψσ(i)(xi),

where SN denotes the set of permutations of the N first integers. From this definition, it
is clear that wedge products lie in L2

a(R3N ). Non-zero wedge products are called Slater
determinants.

For instance, when N = 2, we have:

ψ1 ∧ ψ2(x, y) :=
1√
2

(
ψ1(x)ψ2(y)− ψ2(x)ψ1(y)

)
.

Remark 1.

• If the family (ψj)1≤j≤N is linearly dependent, then the wedge product identically
vanishes as we can see from the determinant formula.
• Observe that the determinant formula also gives:

ψ1 ∧ · · · ∧ ψi ∧ · · · ∧ ψj ∧ · · · ∧ ψN = −ψ1 ∧ · · · ∧ ψj ∧ · · · ∧ ψi ∧ · · · ∧ ψN
• We emphasize that the factorial term 1√

N !
is a convention, due to our considering

wedge products of Hilbert spaces. It is motivated by normalization issues: when
(ψj)1≤j≤N is an orthonormal family, then the corresponding wedge product has

unit norm4 in L2
a(R3N ).

In geometry the factorial term is absent for exterior products of vectors (Grass-
mann algebra) or wedge products of differential forms.

It is easy to see that Slater determinants span the space of antisymmetrical functions.
Indeed, consider an ONB (ϕi)i∈N of L2(R3). Then we know5 that the family (ϕi1⊗· · ·⊗
ϕiN )ij∈N is an ONB of L2(R3)N .

Then pick ϕ ∈ L2
a(R3N ). Decomposing ϕ w.r.t. the above basis, and using its

antisymmetry we get the following. For (i1, . . . , iN ) ∈ NN , and σ ∈ SN , we have:

〈ϕσ(i1) ⊗ · · · ⊗ ϕσ(iN ), ϕ〉 = ε(σ)〈ϕi1 ⊗ · · · ⊗ ϕiN , ϕ〉.

It suffices to decompose σ into a product of transpositions: the signature ε(σ) corre-
sponds to the parity of the number of transpositions of such a decomposition.

We thus obtain that ϕ can be decomposed as a sum of Slater determinants. We leave
as an exercise, the fact that a Slater determinant obtained from an orthonormal family
has unit norm.

Consider a normalized Slater determinant ψ1∧· · ·∧ψN , with ‖ψj‖L2 = 1. If we think
of it as describing the system of N particles, the N one-particle states ψj are the states
occupied by the electrons and are called orbitals.

We recover the fact that the restriction to L2
a(R3N ) implements the Pauli principle:

the orbitals are orthonormal to each other, and Slater determinants span L2
a(R3N ).

4Prove it!
5This follows from two things. First continuous functions with compact support are dense in L2(R3).

Secondly, fix a compact support K ⊂ R3, K = [−M,M ]3 for instance. Then by Stone-Weierstrass
theorem, continuous functions f of the form f(x) = f1(x1)f2(x2)f3(x3) with fi continuous span C(K)
with the sup-norm.
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Remark 2. As a word of caution: the orbitals ψj are not uniquely determined. The
only well-defined geometrical object is the N -dimensional space spanned by the ψj’s.

It is not surprising. If we have the Grassmann algebra in mind, a normalized Slater
determinant is a N -vector. As a state is defined up to a phase, from a geometrical point
of view, it characterizes the N -dimensional space.

We will recover this fact when considering the reduced one-particle density matrices.

2.3. Reduced one-particle density matrices. For a normalized ψ ∈ L2
a(R3N ), its re-

duced one-particle density matrix γψ is the bounded operator on L2(R3), whose integral
kernel is:

γψ(x, y) := N

∫
x′∈R3(N−1)

ψ(x, x′)ψ(y, x′)dx′. (4)

From (4), we can show:

0 ≤ γψ ≤ 1. (5)

This result is proved below in Section 5.1.
For a (normalized) Slater determinant ψ ∈ TN , γΨ is the orthogonal projection onto

the vector space spanned by its orbitals6:

γψ(x, y) =
N∑
j=1

ψj(x)ψj(y), or equivalently γψ =
N∑
j=1

|ψj〉〈ψj |.

The diagonal of γψ is called the density of ψ and written ρψ:

ρψ(x) := γψ(x, x),

=
ψ Slater

∑N
j=1 |ψj(x)|2.

3. The Hartree-Fock model

As said in the introduction, we restrict the set of admissible states and only consider
Slater determinants. As we are mainly interested in states our convention will be that
whenever we write ψ ∈ TN , it is understood that ‖ψ‖L2 = 1 and that ψ = ψ1 ∧ · · · ∧ψN
where ψj are its (normalized) orbitals.

3.1. The Hartree-Fock functional.

3.1.1. Form of the energy functional. The energy of a Slater determinant ψ can be
written in terms of the orbitals ψj , or more compactly in terms of the reduced density
matrix γψ. Below, for ψ ∈ H2

a(R3N ), we write Rγψ the operator defined by the integral
kernel:

Rγψ(x, y) =
γψ(x, y)

|x− y|
.

For such a ψ, Hardy’s inequality ensures that the operator Rγψ is Hilbert-Schmidt.

Lemma 3. Let ψ ∈ TN ∩H2
a(R3N ) be a Slater determinant. Its energy is:

〈ψ,HNψ〉L2
a(R3N ) =

N∑
j=1

∫
R3

(|∇ψj |2 +V |ψj |2)+
1

2

∫∫
R3×R3

ρψ(x)ρψ(y)− |γψ(x, y)|2

|x− y|
dxdy.

More compactly there holds:

〈ψ,HNψ〉L2
a(R3N ) = tr((−∆ + V )γψ) +D(ρψ)−X(γψ), (6)

6This is left as an exercise.
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where D(ρψ) and X(γψ) denote:

D(ρψ) =
1

2

∫∫
R3×R3

ρψ(x)ρψ(y)

|x− y|
dxdy =

1

2
tr(ρψ ∗ 1

|·|γψ),

X(γψ) =
1

2

∫∫
R3×R3

|γψ(x, y)|2

|x− y|
dxdy =

1

2
tr(Rγψγψ).

Remark 4. The term D(ρψ) is called the direct term and corresponds to the electrostatic
potential of the density ρψ. The term X(γψ) is called the exchange term and is a purely
quantic term.

The Lemma is proven below in Section 5.2.

3.1.2. Properties of the functional. As we have seen in the part on quadratic forms,
we can define the energy on the form domain of HN . We recover this fact in (6): the
functional energy is well-defined if the orbitals ψj ’s only have a H1-regularity. It is
convenient to introduce the functional energy as a function of the orbitals.

Definition 1. Let E : H1(R3)N → R be the functional defined as follows. For ψ =

(ψ1, . . . , ψN ) ∈ H1(R3)N , we define

E(ψ) :=

N∑
j=1

∫
R3

(|∇ψj |2 + V |ψj |2) +D(ρψ)−X(γψ),

where γψ denotes the compact operator
∑N

j=1 |ψj〉〈ψj | and ρψ(x) :=
∑

j |ψj |2.

Remark 5. Observe that for ψ ∈ H1(R3)N we have:

|γψ(x, y)|2 =

∣∣∣∣∑
i

ψi(x)ψi(y)

∣∣∣∣2,
≤
∑
i

|ψi(x)|2
∑
i

|ψi(y)|2 = ρψ(x)ρψ(y). (7)

In particular we have D(ρψ)−X(γψ) ≥ 0.

For ψ ∈ H1(R3)N , we also defines its gram matrix as the matrix of the inner products

of its elements7:
Gram(ψ) :=

(
〈ψi, ψj〉

)
1≤i,j≤N ∈ CN×N

The Hartree-Fock functional EHF on H1(R3)N corresponds to the restriction of E to
the orthonormal families ψ ∈ H1(R3)N , or equivalently to the families which satisfy:

Gram(ψ) = 1CN . (8)

We thus introduce the sets:

M := {ψ ∈ H1(R3)N , Gram(ψ) = 1CN },
K := {ψ ∈ H1(R3)N , 0 ≤ Gram(ψ) ≤ 1CN }.

(9)

We have indeed the following.

Lemma 6. The set K is the closure of M under the weak H1-topology.

7From a geometrical point of view, the Gram matrix corresponds to the pullback of the L2-metric
through the submersion z := (z1, . . . zN ) 7→

∑N
j=1 zjψj from CN to span{ψj , 1 ≤ j ≤ N}. This simply

means that for z, w ∈ CN we have:〈∑
i

ziψi,
∑
j

wjψj
〉
L2(R3)

= 〈z,Gram(ψ)w〉CN = z∗Gram(ψ)w.
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Remark 7. For M and K, we can replace the H1-norm by the L2-norm in both the
definition and the lemma: the result remains.

Lemma 6 is to be related to the following proposition (proven in Section 5.3).

Proposition 8. [Properties of E] The functional E : H1(R3)N → R is well-defined and
satisfies the following properties.

(1) It is ‖·‖H1-continuous.

(2) It is H1-weakly lower semi-continuous. That is, if (ψ(n))n is a sequence of

H1(R3)N which converges weakly to ψ, then we have:

E(ψ) ≤ lim inf
n→+∞

E(ψ(n)).

(3) The functional E|K is bounded from below, that is EK := infψ∈K E(ψ) ∈ R. Also
there exists CZ , C2 > 0 such that:

∀ψ ∈ K, ‖ψ‖2H1 ≤ C2E(ψ) +NCZ .

Furthermore, the functional E is invariant under rotation in the following sense. The
group of unitary matrices U(CN ) acts on H1(R3)N as follows: for U ∈ U(CN ) we define

U · ψ :=
( N∑
j=1

Uijψj
)

1≤i≤N .

Under this action, the energy remains unchanged.

Proposition 9. For U ∈ U(CN ) and ψ ∈ H1(R3)N , there holds E(U · ψ) = E(ψ).

The proof of Proposition 8 uses the following result, which is important by itself. This
is a special case of the theorem of Rellich-Kondrachov (see [1]).

Theorem 10. In any dimension d ∈ N the following holds.
Let (ψ(n))n be a H1-bounded sequence which converges H1-weakly to ψ ∈ H1(Rd).
Then there exists a subsequence (ψnk)k≥0 such that for all compact set K ⊂ Rd, the

sequence ((ψnk)|K )k≥0 converges to ψ|K in L2(K).

We say that the set H1(Rd) is compactly injected in L2
loc(Rd).

We prove this theorem in Section 5.4.

Proof of Lemma 6. We first check that K is weakly closed. Consider a sequence ψ(n) H
1

⇀

ψ in K. Then for z ∈ CN , we have8:

〈z,Gram(ψ)z〉CN = ‖
∑
j

zjψj‖2L2(R3),

≤ lim inf
n→+∞

‖
∑
j

zjψ
(n)
j ‖

2
L2(R3),

≤ lim inf
n→+∞

〈z,Gram(ψ(n))z〉CN ≤ ‖z‖2CN .

As M⊂ K, this also shows that the weak closure of M is included in K.

Conversely let ψ ∈ K. We show that ψ is a weak limit of a sequence in M.

8by the uniform boundedness principle.
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Let U ∈ U(CN ) such that U Gram(ψ)U∗ = diag(ε1, . . . , εN ) with 0 ≤ εi ≤ 1. Observe
that U∗Gram(ψ)U is the Gram matrix of U · ψ as we have:〈

U∗z,Gram(ψ)U∗z
〉2

CN =
∥∥∑

i

(U∗z)iψi
∥∥2

CN ,

=
∥∥∑

i

∑
j

U∗ijzjψi
∥∥2

CN ,

=
∥∥∑

j

(∑
i

Ujiψi
)
zj
∥∥2

CN .

So w.l.o.g. we can assume that the Gram matrix is diagonal, or in other words that the
family (ψi)1≤i≤N is orthogonal with ‖ψi‖2L2 = εi.

Let χ ∈ C∞0 (R3) with ‖χ‖2L2 = 1 and let ni ∈ S2, 1 ≤ i ≤ N be N different directions.
For every R > 0 and i, we define χi,R by:

χi,R(x) := ψi(x) +
√

1− εiχ(x−Rni),

and we define (ψi,R)1≤i≤N as the family obtained by applying the Gram-Schmidt pro-
cedure to (χi,R)1≤i≤N : in particular Gram((ψi,R)1≤i≤N ) = 1CN .

Then, as R→ 0, it is straightforward9 to see that (ψi,R)1≤i≤N weakly converges to ψ
as R tends to +∞.

�

Proof of Prop. 9. It follows from the fact that γU ·ψ = γψ. Indeed, there holds:

γU ·ψ(x, y) =
∑
i

((U · ψ)i(x))(U · ψ)i(y),

= 〈U · ψ(y), U · ψ(x)〉CN ,
= 〈ψ(y), ψ(x)〉CN = γψ(x, y).

hence we also have ρU ·ψ = ρψ, showing the equalities of the two direct terms, resp.

exchange terms.
If we do not use the trace formula for the kinetic energy and the interaction energy

with the nuclei, observe:∑
i

∫
|∇(U · ψ)i|2 =

∑
k

∫
R3

〈∂k(U · ψ), ∂k(U · ψ)〉CN ,

=
∑
k

∫
R3

〈U · (∂kψ), U · (∂kψ)〉CN ,

=
∑
k

‖∂kψ‖2L2(R3)N =
∑
i

∫
‖∇ψi‖2L2(R3).

Similarly: ∑
i

∫
R3

|(U · ψ)i|2V =

∫
R3

‖U · ψ‖2CNV,

=

∫
R3

‖ψ)‖2CNV =
∑
i

∫
R3

|ψi|2V.

�

3.2. Existence of a minimizer.

9We leave the details as an exercise.
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3.2.1. Statement of the main theorems.

Theorem 11. [Lieb and Simon] If N < Z + 1, then there exists a minimizer to (3).
That is, there exists a Slater determinant ψ ∈ TN ∩H2

a(R3N ) with ‖ψ‖L2 = 1 such that:

〈ψ,HNψ〉 = inf
ϕ∈TN∩H

2
a(R3N )

‖ϕ‖
L2=1

〈ϕ,HNϕ〉 =: ENHF .

To prove this theorem, we need a priori information on minima.
From a mathematical point of view, the minimization problem is under constraint,

hence we expect putative minimizers to satisfy some Euler-Lagrange equations. Here it
turns out that the E.L. equations involve the so-called mean-field operator.

Definition 1 (Mean-field operator). For ψ ∈ TN ∩ H1
a(R3N ), the mean-field operator

associated to ψ is the self-adjoint operator on L2(R3):

Fψ := −∆ + V + ργψ ∗ 1
|·| −Rγψ . (10)

This definition naturally extends to H1(R3)N .

We recall the important feature of this operator in the following lemma.

Lemma 12. Let ψ ∈ H1(R3)N . Then its mean-field operator Fψ is self-adjoint on

L2(R3) with domain H2(R3). Furthermore its essential spectrum is [0,+∞).

Theorem 13. [Properties of minima] Assume that there exists a minimizer ψ ∈ TN to
ENHF and let Fψ be its mean-field operator.

Then up to replacing ψ by U ·ψ for some U ∈ U(CN ), the ψi’s are the eigenfunctions
of Fψ corresponding to the N lowest eigenvalues λ1 ≤ · · · ≤ λN of Fψ.

If the N + 1-th min-max coefficient µN+1(Fψ) of Fψ is an eigenvalue, then we have:

λN = µN (Fψ) < µN+1(Fψ) ≤ 0 (Aufbau principle).

In that case, we have:
γψ = 1(−∞,λN ](Fψ).

3.2.2. Proof of Lemma 12. The key-result is Hardy’s inequality. To simplify notations,
we write ψ instead of ψ.

We have seen that V ∈ L2 + L∞. Furthermore, Hardy’s inequality gives that ρψ ∗ 1
|·|

is bounded. Indeed for all x ∈ R3 we have:[ ∫
ρψ(y)

|x− y|
dy

]2

≤
∫
ρψ(y)dy

∫
ρψ(y)

|x− y|2
dy,

≤ 4‖ψ‖2L2(R3)N ‖∇ψ‖
2
L2(R3)N .

Similarly Hardy’s inequality implies that γψ is Hilbert-Schmidt with:∫∫ |γψ(x, y)|2

|x− y|2
dxdy ≤ 4 tr(−∆γψ) = 4‖∇ψ‖2L2 .

Hence by Kato’s theorem, we get that Fψ is self-adjoint with domain H2(R3).
We now use Weyl’s theorem for the invariance of the essential spectrum and show

that V + ρψ ∗ 1
|·| −Rγψ is (−∆)-compact.

First, Rγψ is already compact.

For vρ := ρψ ∗ 1
|·| which is L∞, it suffices to show that it converges to 0 at infinity to

get that vρ(−∆ + 1)−1 is compact as p 7→ (|p|2 + 1) is L∞ and tends to 0 at infinity.
For x ∈ R3 with |x| ≥ 2, we have:

vρ(x) =

∫
y:|x−y|≤ |x|2

ρψ(y)

|x− y|
dy +

∫
y:|x−y|≥ |x|2

ρψ(y)

|x− y|
dy.
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The last integral is smaller than 2
|x|‖ψ‖

2
L2 . By Cauchy-Schwarz’s inequality and Hardy’s

inequality, the square of the first integral is smaller than

4‖∇ψ‖2L2

∫
y:|x−y|≤ |x|2

ρψ(y)dy ≤ 4‖∇ψ‖2L2

∫
y:|y|≥ |x|2

ρψ(y)dy,

which tends to 0 as x→ +∞ by monotone convergence.

As last, as we have seen in earlier lecture, we have V ∈ L2 + L∞ where the L∞ part
tends to 0 at infinity. Hence, as p ∈ R3 7→ (p2 + 1)−1 is also in L2(R3), we get that
V (−∆ + 1)−1 is compact.

3.2.3. Proof of Theorem 13. We derive the Euler-Lagrange equations from the minimiz-
ing property.

We start with the following observation: each orbital ψi, 1 ≤ i ≤ N is the minimizer
of the minimization problem:

Ei(ψ) := inf{E(ψ1, . . . , ψi−1, ϕ, ψi+1, . . . , ψN ),

ϕ ∈ H2(R3), ‖ϕ‖L2(R3) = 1 & 〈ψj , ϕ〉L2(R3) = 0, j 6= i}.

This corresponds to freezing all the orbitals but ψi and tuning ψi.
A computation yields10:

E(ψ1, . . . , ψi−1, ϕ, ψi+1, . . . , ψN ) = E(ψ1, . . . , ψi−1, 0, ψi+1, . . . , ψN ) + 〈F (i)
ψ ϕ,ϕ〉L2(R3),

(11)

where F
(i)
ψ denotes the mean-field operator with the orbital ψi removed:

F
(i)
ψ := −∆ + V + (ρψ − |ψi|2) ∗ 1

| · |
−
(
γψ(x, y)

|x− y|
− ψi(x)ψi(y)

|x− y|

)
.

We use the minimization property: let t ∈ C and ϕ ∈ H2(R3) with 〈ψj , ϕ〉L2(R3) = 0,
1 ≤ j ≤ N . We have:

E
(
ψ1, . . . , ψi−1,

ψi + tϕ√
1 + |t|2

, ψi+1, . . . , ψN

)
≥ ENHF = E(ψ1, . . . , ψN ).

Equivalently, we have〈
F

(i)
ψ

ψi + tϕ√
1 + |t|2

,
ψi + tϕ√

1 + |t|2
〉
L2(R3)

− 〈F (i)
ψ ψi, ψi〉L2(R3) ≥ 0,

which we can rewrite as

2

1 + |t|2
Re 〈F (i)

ψ ϕi, tϕ〉L2(R3) +
|t|2

1 + |t|2
(
〈F (i)

ψ ϕ,ϕ〉L2(R3) − 〈F
(i)
ψ ψi, ψi〉L2(R3)

)
≥ 0. (12)

Variation at first order . The first order term (in t) in (12) implies that F
(i)
ψ ψi is orthog-

onal to ϕ for every ϕ ∈ H2(R3) orthogonal to the ψj ’s.

In other words: F
(i)
ψ ψi ∈ span(ψj)1≤j≤N . However for 1 ≤ i ≤ N we have:

F
(i)
ψ ψi = Fψψi, (13)

because11

|ψi|2 ∗
1

| · |
ψi −

ψi(x)ψi(y)

|x− y|
ψi = 0.

10The computation is left as an exercise.
11one sometimes say that an electron does not see its own field.
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So we obtain the Euler-Lagrange equations:

Fψψi =
∑
j

λijψj ,

where (λij)1≤i,j≤N are the Lagrange multipliers. As the operator Fψ is self-adjoint, we

have λji = λij and the matrix (λij)1≤i,j≤N is Hermitian. So up to unitary U ∈ U(CN ),
the Euler-Lagrange equations read:

Fψψi = λiψi,

with λ1 ≤ · · · ≤ λN . In other words, the E.L. equations say that the ψi’s are (up to a
rotation) eigenfunctions of the mean-field operator.

Remark 14. An electron does not see its own field, but in general for ϕ ∈ H2(R3), a
computation yields:

〈F (i)
ψ ϕ,ϕ〉L2(R3) = 〈Fψϕ,ϕ〉L2(R3) −

∫∫
|ψi(x)|2|ϕ(x)|2

|x− y|
dxdy +

∫∫
(ψiϕ)(x)(ψiϕ)(y)

|x− y|
dxdy,

= 〈Fψϕ,ϕ〉L2(R3) −
1

2

∫∫
|ϕ ∧ ψi(x, y)|2

|x− y|
dxdy.

Variation at second order . The second order term (in t) in (12) implies that for all
normalized ϕ ∈ H2(R3) orthogonal to the ψj ’s we have:

〈F (i)
ψ ϕ,ϕ〉L2(R3) ≥ 〈F

(i)
ψ ψi, ψi〉L2(R3),

which can be rewritten thanks to Remark 14 as:

〈Fψϕ,ϕ〉L2(R3) ≥ 〈F
(i)
ψ ψi, ψi〉L2(R3) +

1

2

∫∫
|ϕ ∧ ψi(x, y)|2

|x− y|
dxdy,

≥ 〈Fψψi, ψi〉L2(R3) +
1

2

∫∫
|ϕ ∧ ψi(x, y)|2

|x− y|
dxdy.

This holds for all 1 ≤ i ≤ N , hence by the min-max principle we get:

µN+1(Fψ) ≥ λN+1,

which ends the proof. Indeed, if Fψ has at least N+1 eigenvalues below 0, the condition
above with ϕ the corresponding N+1-th eigenfunction gives λN+1 > λN , as ϕ∧ψN 6= 0.

3.2.4. Proof of Theorem 11.

We are now ready to prove the existence of a minimizer in the case N < Z + 1.
The method goes as follows. We will relax the constraint Gram(ψ) = 1CN and show

that there exists a minimizer ψ of E on K (see (9) for the definition of K).
Then, we will show that when N < Z + 1, the minimizer ψ is in fact in M, that is

that it satisfies Gram(ψ) = 1CN . In particular it gives rise to a minimizer ψ1 ∧ · · · ∧ψN
of ENHF .

Existence of a minimizer of EK = infψ∈K E(ψ). We use the direct method of calculus of

variations. Let (ψ(n))n be a minimizing sequence for EK, that is ψ(n) ∈ K and:

lim
n→+∞

E(ψ(n)) = EK.

By Proposition 8, the sequence (ψ(n))n is H1-bounded. By the theorem of Banach-
Alaoglu, up to extracting a subsequence, we can assume that it converges H1-weakly
to ψ ∈ K. And Proposition 8 ensures us that ψ is a minimizer as E is H1-weakly lower
semi-continuous on K.
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End of the proof . Consider the minimizer ψ ∈ K for EK. We know that EK ≤ 0 as
0 ∈ K.

Up to applying a unitary U ∈ U(CN ) to ψ, we can assume that Gram(ψ) = diag(ε1, . . . , εN )
with 0 ≤ εi ≤ 1. In other words, we can assume that for all i 6= j there holds
〈ψi, ψj〉L2(R3) = 0.

As in the proof of Theorem 13, each ψi is a minimizer of the minimization problem:

inf{E(ψ1, . . . , ψi−1, ϕ, ψi+1, . . . , ψN ),

ϕ ∈ H1(R3), ‖ϕ‖L2(R3) ≤ 1, 〈ψj , ϕ〉L2(R3) = 0, j 6= i}.

Equivalently (see (11)), it is a minimizer for:

Ii := inf{〈F (i)
ψ ϕ,ϕ〉L2(R3), ϕ ∈ H1(R3), ‖ϕ‖L2(R3) ≤ 1, 〈ψj , ϕ〉L2(R3) = 0, j 6= i},

where the expectation is to be understood in the quadratic form sense (H1(R3) is the

form domain of F
(i)
ψ ). Taking ϕ = 0 we have Ii ≤ 0, hence either Ii = 0 or Ii < 0.

Claim: it suffices to prove that if N < Z + 1 then Ii < 0.

Indeed, in that case, as F
(i)
ψ is bounded from below, and the minimizer ψi is non-zero

(the essential spectrum of F
(i)
ψ is [0,+∞)). Up to considering ψi

‖ψi‖L2
, this minimizer has

necessarily norm 1 and as this holds for all 1 ≤ i ≤ N , this gives

Gram(ψ) = 1CN .

Lemma 15. Let ψ ∈ K. If N < Z+1, then F
(i)
ψ has an infinite discrete spectrum below

its essential spectrum [0,+∞).

Proof of the Lemma. First we observe that Rγψ is a non-negative operator as for all

ϕ ∈ L2(R3) and 1 ≤ i ≤ N we have:

〈ϕ,R|ψi〉〈ψi|ϕ〉L2(R3) :=

∫∫
ϕ(x)ψi(x)ψi(y)ϕ(y)

|x− y|
dxdy,

= 4π

∫
R3

|(ψiϕ)̂ (p)|2

|p|
dp ≥ 0.

Hence we have the quadratic form inequality:

F
(i)
ψ ≤ −∆ + V + (ρψ − |ψi|2) ∗ 1

| · |
=: Gi.

By the min-max principle, it suffices to show that Gi has infinite discrete spectrum
below [0,+∞), and to do so we will use the Rayleigh-Ritz method.

The reason is that Gi takes the form −∆ + µ ∗ 1
|·| , where µ is a finite Borel measure

with µ(R3) ≤ Z − (N − 1) < 0.

As we have done in a previous lecture, we introduce a radial function χ ∈ C∞0 (R3, [0,+∞))
with norm 1 and whose support lies in the annulus {x ∈ R3, 1 < |x| < 2}. For every
R > 1, we write:

χR(x) := R−3/2χ(x/R).

For a given R0 ≥ 1, the family (χ2nR0)n≥0 is an orthonormal family.
For R > 1, the following estimates hold.

• First we have

‖∇χR‖2L2 = R−2‖∇χ‖2L2 .
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• Then we have:∫
|ψj |2 ∗

1

| · |
|χR|2 =

∫
x
R−3dx|χ(R−1x)|2

∫
y

|ψj(y)|2

|y − x|
dy,

=
1

R

∫
x

dx|χ(x)|2
∫
y

|ψj(y)|2

|y/R− x|
dy,

=
1

R

∫
y

dy|ψj(y)|2
∫
x

|χ(x)|2

|y/R− x|
dx.

As the function χ is radial: χ(x) = f(|x|), a computation gives:∫
x

|χ(x)|2

|y − x|
dx = 2π

∫ +∞

0
r2f(r)2dr

∫
θ∈[0,π]

sin(θ)dθ√
r2 + |y|2 − 2 cos(θ)r|y|

,

= 2π

∫ +∞

0
r2f(r)2 (r + |y|)− |r − |y||

r|y|
dr,

(Newton’s formula) =
1

|y|

∫
x:|x|≤|y|

|χ(x)|2dx+

∫
x:|x|≥|y|

|χ(x)|2

|x|
dx,

and thus∫
|ψj |2 ∗

1

| · |
|χR|2 ≤

∫
y
|ψi(y)|2 1

R

∫
x

|χ(x)|
|x|

dxdy ≤ 1

R

∫
x

|χ(x)|
|x|

dx.

• Similarly, for R > 0 large enough, we have:

−zm
∫
x

|χR(x)|2

|x−Rm|
dx = −zm

R

∫
|χ(x)|2

|x− Rm
R |

dx,

= −zm
R

∫
|χ(x)|2

|x|
dx.

(We have used Newton’s formula and the fact that supp χ ⊂ {x, |x| ≥ 1}).
So for n large enough (say n ≥ n0), we have:

〈χ2nR0 , Giχ2nR0〉L2(R3) ≤
N − 1− Z

2nR0

∫
|χ(x)|2

|x|
dx+

1

4nR2
0

‖∇χ‖2L2 < 0.

This ends the proof by the Rayleigh-Ritz principle applied to the orthonormal family
(χ2nR0)n≥n0 .

�

4. The Hartree-Fock functional as a function of the reduced
one-particle density matrix

4.1. Reminder on trace-class operators. As we have seen, we can see the Hartree-
Fock functional as a function of the reduced one-body density matrix only. The formula
involves the trace. In this course we did not properly introduce trace-class operators:
we refer the reader to [4, Sec. VI.6].

In this part we only states results without proof.

We recall that for a non-negative operator γ ≥ 0, the trace tr(γ) is defined as:

tr(γ) :=
∑
i

〈ϕi, γϕi〉,

where (ϕi)i is any ONB of the underlying Hilbert space (here L2(R3)). First, monotone
convergence ensures that this formula is well-defined for a given ONB, and Parseval’s
identity together with the fact that 〈ϕi, γϕi〉 = ‖√γϕi‖2 ensures us that this formula
does not depend on the ONB.
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Trace-class operators are the bounded operators γ for which |γ| =
√
γ∗γ has finite

trace. Such operators are necessarily compact, and the family of their singular values
define an element in `1(N). The latter condition characterizes trace-class operators.

We can then define the trace if a trace-class opeartor γ by the same formula: the
formula does not depend on the ONB and the corresponding series are absolutely con-
vergent.

It can be shown that the set of trace-class operators form a ∗-ideal of bounded oper-
ators. Furthermore it is also a Banach space for the norm:

‖γ‖S1 := tr |γ|.

Using the canonical form of compact operators, we can show that the trace-class
operators are precisely the operators that can be written as a product of two Hilbert-
Schmift operators. In L2(R3), a trace-class operator γ has an integral kernel γ(x, y) and
we have:

tr(γ) =

∫
γ(x, x)dx.

We also emphasize that the space S1(L2(R3)) of trace-class opeartors is, through the
trace, the dual of compact operators on L2(R3) (with the operator norm), and that its
dual is the banach space of bounded operators on L2(R3). This is very similar to the
results know for sequences:

`1(N) = c0(N)′ & (`1(N))′ = `∞(N).

Here for a compact operator K and a trace-class operator γ, the duality is given by

〈γ,K〉Comp′×Comp = tr(γK).

4.2. Reduced density matrix of Slater determinant. We have seen that for a
normalized ψ ∈ L2

a(R3N ), we have 0 ≤ γψ ≤ 1, and that it is a rank N projector if ψ is
a Slater determinant. In fact the converse is also true.

Lemma 16. Let a normalized ψ ∈ L2
a(R3N ). Then γψ is an orthonormal projector iff

ψ is a Slater determinant

Proof. The proof is similar as the one in Section 5.2. Let (ϕi)i≥i0 be an ONB of L2(R3)
such that (ϕi)i0≤i≤0 is an ONB of span γψ and (ϕi)i≥1 is an ONB of ker γψ.

For a subset I = {i1 < · · · < iN} ⊂ N + i0 of N elements, we write ϕI the Slater
determinant ϕi1 ∧ · · · ∧ ϕiN .

Let us decompose:

ψ =
∑
I

cIϕI .

A computation yields

γψ(x, y) = N

∫
ψ(x, x′)ψ(y, x′)dx′,

=
∑

I⊂[|i0,0|]
|I|=N

|cI |2γϕI .

We recall that |i0, 0|] denotes {i0, i0 +1, . . . ,−1, 0} or Z− if i0 = −∞. From this formula,
it is easy to check the equivalence of the two assertions. �

The proof also shows that γψ is in the convex hull of reduced one-body density
matrices of Slater determinants.

More generally the following holds.
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Lemma 17. The closed convex hull of

PN := {γ rank Northogonal projector in L2(R3)}

under the trace-norm is the convex set:

Kγ,N := {γ ∈ L(L2(R3)), 0 ≤ γ ≤ 1, tr(γ) = N}.

The set Kγ,N is also the closure of PN under the ∗-weak topology of the space of trace-
class operators.

Proof. The proof of the first assertion goes as follows. The condition 0 ≤ γ ≤ 1 is
continuous in the ∗-weak topology of S1 as we have:

〈ψ, γψ〉 = tr(γ|ψ〉〈ψ|).

By density, it then suffices to show that finite rank elements γ of Kγ,N can be written as
a convex combination of elements in PN . Using the spectral theorem on γ, this result
can be shown by induction on the rank of γ.

The proof of the second assertion is very similar to that of Lemma 6 (take the same
sequence mutatis mutandis) and is left to the reader. (By density it suffices to show
that finite rank elements γ ∈ Kγ,N are limits of a weakly converging sequence in PN ).

The details are left to the reader. �

4.3. The Hartree-Fock functional and Lieb’s variational principle. We recall
that the Hartree-Fock functional is given formally by:

EHF (γ) = tr((−∆ + V )γ) +D(ργ)−X(γ),

where ργ(x) denotes the diagonal γ(x, x).
Originally, it was only defined on the one-body density matrices of Slater determi-

nants. The trace tr(−∆γ) has to be understood in the quadratic form sense (in the
Hilbert space of Hilbert-Schmidt operators) and denotes:

tr(−∆γ) =
∑
i

ni‖∇ψi‖2L2 ,

where γ =
∑

i ni|ψi〉〈ψi| is the spectral decomposition of γ. If we write γ̂(p, q) the
integral kernel of its Fourier transform FγF−1, we also have the formula:

tr(−∆γ) =

∫
R3

|p|2γ̂(p, p).

Having (17) in mind, we can relax the constraint and extend EHF to

Aγ,N :=
{
γ ∈ Kγ,N , tr(−∆γ) < +∞

}
,

and we consider the corresponding variational problem

ENgHF := inf
γ0∈Aγ,N

EHF (γ0).

Lemma 18. The Hartree-Fock functional is well-defined and bounded from below on
Aγ,N . Furthermore we have ENgHF = ENHF , and if there is a minimizer, then it is the
reduced density matrix of a Slater determinant.

The second part of the Lemma follows from Lieb’s variationnal principle, which we
state for Aγ,N .

Lemma 19 (Lieb’s variationnal principle). Let γ ∈ Aγ,N , then there exists a rank N
projector γ1 in Aγ,N such that EHF (γ1) ≤ EHF (γ).
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Proof. The fact that EHF is well-defined and bounded from below on Aγ,N follows from
Hardy’s inequality and the fact that

√
γψ ∈ H1(R3). We prove below the last statement

and give a partial proof of the first result to the reader.
For γ ∈ Aγ,N , we consider its spectral decomposition γ =

∑
i ni|ψi〉〈ψi|, where ni ≥ 0.

We have

‖∇√ργ‖2L2 =

∫ |∇ργ |2
4ργ

≤
∑
i

ni‖∇ψi‖2L2 = tr(−∆γ),

where we have used Cauchy-Schwarz’s inequality to get∣∣∣2Re
∑
i

niψi∇ψi
∣∣∣2 ≤ 4

∑
i

ni|ψi|2
∑
i

ni|∇ψi|2.

We leave as an exercise the proof of

X(γψ) ≤ 2‖γ‖S2

√
tr(−∆γ) ≤ 2

√
N tr(−∆γ),

D(ργ) ≤ 2‖√ργ‖L2‖∇√ργ‖L2 ≤ 2
√
N tr(−∆γ),

and the end of the proof.

Lieb’s variationnal principle. Lett γ ∈ Aγ,N , we consider its spectral decomposition
γ =

∑
i≥1 ni|ψi〉〈ψi|, where 0 ≤ ni ≤ 1. Assume that there exists i1 with 0 < ni1 < 1.

As
∑

i ni = N , there exists necessarily a second index i2 with 0 < ni2 < 1. W.l.o.g. we
can assume that i1 = 1 and i2 = 2 and write:

γ = n1|ψ1〉〈ψ1|+ n2|ψ2〉〈ψ2|+ g.

Let δγ := |ψ1〉〈ψ1|−|ψ2〉〈ψ2|. Let t ∈ R: for |t| small enough we still have γt := γ+tδγ ∈
Aγ,N . A computation yields

EHF (γt) = EHF (γ) + t
(
〈Fγψ1, ψ1〉L2 − 〈Fγψ2, ψ2〉L2

)
+ t2

(
D(ρδγ)−X(δγ)

)
,

= EHF (γ) + t
(
〈Fγψ1, ψ1〉L2 − 〈Fγψ2, ψ2〉L2

)
− t2

∫∫
|ψ1 ∧ ψ2(x, y)|2

|x− y|
dxdy,

where we recall that Fγ = −∆ + V + ργ ∗ 1
|·| −Rγ .

Thus optimizing in t, we can choose t0 ∈ R such that γt0 ∈ Aγ,N has a smaller energy
and satisfies either γt0ψ1 = ψ1 or γt0ψ2 = ψ2.

By induction12 on the indices i such that 0 < ni < 1, we find a rank N projector
which has a smaller energy.

The same argument shows that a minimizer must necessarily be a projector. �

5. Technical proofs

In the first two subsections, the proofs are all about spotting the permutations in SN
that have a non-trivial contribution to the formula at hand.

5.1. Proof of (4). To show the first inequality observe that for f ∈ L2(R3), we have:

〈f, γψf〉L2(R3) := N

∫∫
dxdy

∫
x′
f(x)ψ(x, x′)ψ(y, x′)f(y)dx′,

= N

∫ ∣∣∣∣ ∫ f(x)ψ(x, x′)dx

∣∣∣∣2dx′. (14)

12The argument as it is only works for finite rank operators. To make the argument rigorous in
general, you can for instance choose at each step two of the eigenvalues of γ which are the farthest from
0 and 1. By construction, you end up with a sequence which converges in trace-norm to a projector.
You then have to use a weak semi lower-continuity argument.
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To show that γψ ≤ 1, we can decompose13 ψ w.r.t. a basis of Slater determinants:

ψ =
∑
I⊂N
|I|=N

cIϕI ,

where ϕI denotes ϕi1 ∧ · · · ∧ ϕiN with {i1 < i2 < · · · < iN} = I and (ϕi)i is an ONB.

W.l.o.g. we can assume that ‖f‖L2 = 1 and f = ϕ1. By density we can assume that
the decomposition of ψ is finite.

From the formula of the Slater determinants ϕI , the expression 14 for ψ = ϕI is non-
zero if and only if 1 ∈ I. Recall that we write I = {i1 < · · · < iN}, x = (x1, . . . , xN ),
and that we assume f = ϕ1. We thus have:

√
N !

∫
x∈R3

f(x1)ψ(x1, x
′)dx1 =

√
N !
∑
I

cI

∫
x∈R3

f(x1)ϕI(x1, x
′)dx1,

=
∑
I

cI√
(N − 1)!

∑
σ∈SN

ε(σ)f(x1)

N∏
j=1

ϕiσ(j)(xj)dx1,

=
∑
I: 1∈I

cI√
(N − 1)!

∑
σ∈SN
σ(1)=1

ε(σ)f(x1)

N∏
j=1

ϕiσ(j)(xj)dx1,

=
∑

I: I={1}∪I′
cIϕI′ ,

where ϕI′ denotes the Slater determinant ϕi2 ∧ · · · ∧ ϕiN in L2
a(R3(N−1)).

We thus can rewrite 〈f, γψf〉 as follows:

〈ϕ1, γψϕ1〉L2(R3) =
∑

I: I={1}∪I′

∑
J : J={1}∪J ′

〈cIϕI′ , cJϕJ ′〉L2
a(R3(N−1)),

=
∑

I: I={1}∪I′
|cI |2 ≤ 1.

5.2. Proof of Lemma 3. Let ψ = ψ1 ∧ · · · ∧ ψn be a Slater determinant.
We first compute the expectation of A :=

∑
i(−∆xi +V (xi)), and write Ai := −∆xi +

V (xi).
We then compute the expectation of B :=

∑
i<j

1
|xi−xj | .

5.2.1. The term A. We have:∑
i

〈Aψ,ψ〉L2
a(R3N ) =

∑
i

∑
σ,τ∈SN

ε(σ)ε(τ)

N !
〈Ai

∏
k

ψσ(k)(xk),
∏
`

ψτ(`)(x`)〉L2
a(R3N ),

=
∑
i

∑
σ,τ∈SN

ε(σ)ε(τ)

N !
〈Aiψσ(i)(xi), ψτ(i)(xi)〉L2(R3)

∏
k 6=i
〈ψσ(k)(xk), ψτ(k)(xk)〉L2(R3),

=
∑
i

∑
σ,τ∈SN

ε(σ)ε(τ)

N !
〈Aiψσ(i)(xi), ψτ(i)(xi)〉L2(R3)

∏
k 6=i

δσ(k) τ(k).

Each term in the above sum is non-zero iff for all k 6= i we have σ(k) = τ(k), that is iff
σ = τ .

13there is a very short proof using the CAR and the fact that 〈f, γψg〉L2(R3) = 〈a(g)ψ, a(f)ψ〉L2
a(R3N ).
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Then, given 1 ≤ i, j ≤ N , there exist (N − 1)! permutations of SN mapping i to j.
Hence we get:∑

i

〈Aψ,ψ〉L2
a(R3N ) =

1

N

∑
i

∑
j

〈Aiψj(xi), ψj(xi)〉L2(R3),

=
1

N

∑
i

∑
j

〈Aiψj , ψj〉L2(R3) =
∑
j

〈(−∆ + V )ψj , ψj〉L2(R3).

5.2.2. The term B. For the expectation of B, we use the antisymmetry and consider
the change of variables which switch x1 and xi, and x2 and xj . This gives:

〈Bψ,ψ〉L2
a(R3N ) =

∑
1≤i<j≤N

∫
|ψ(x)|2

|xi − xj |
dx =

N(N − 1)

2

∫
|ψ(x)|2

|x1 − x2|
dx,

=
N(N − 1)

2

∑
σ,τ∈SN

ε(σ)ε(τ)

N !

∫
x1,x2

dx1dx2

|x1 − x2|

∫
x′

∏
k

ψσ(k)(xk)
∏
`

ψσ(`)(x`)dx
′,

=
1

2 (N − 2)!

∑
σ,τ∈SN

ε(σ)ε(τ)

∫
x1,x2

dx1dx2

|x1 − x2|

2∏
k=1

ψσ(k)(xk)ψτ(k)(xk)
∏

3≤k′≤N
〈ψσ(k′), ψτ(k′)〉L2(R3),

=
1

2 (N − 2)!

∑
σ,τ∈SN

ε(σ)ε(τ)

∫
x1,x2

dx1dx2

|x1 − x2|

2∏
k=1

ψσ(k)(xk)ψσ(k)(xk)
∏

3≤k′≤N
δσ(k′) τ(k′).

The terms of the above sum are non-zero iff for all 3 ≤ k ≤ N there holds σ(k) = τ(k).
Hence either τ = σ or τ = (1 2) ◦ σ, in which case ε(σ)ε(τ) is equal to 1 resp. −1.

Thus

〈Bψ,ψ〉L2
a(R3N ) =

1

2 (N − 2)!

∑
σ∈SN

dx1dx2

|x1 − x2|
(
|ψσ(1)(x1)|2|ψσ(2)(x2)|2−[ψσ(1)ψσ(2)](x1)[ψσ(2)ψσ(1)](x2)

)
.

For given i 6= j, there are (N − 2)! permutations of SN with σ(1) = i and σ(2) = j.
Hence, there holds:

〈Bψ,ψ〉L2
a(R3N ) =

1

2

∑
i 6=j

∫
x1,x2

dx1dx2

|x1 − x2|
(
|ψi(x1)|2|ψj(x2)|2 − [ψiψj ](x1)[ψjψi](x2)

)
,

=
1

2

∑
1≤i,j≤N

∫
x1,x2

dx1dx2

|x1 − x2|
(
|ψi(x1)|2|ψj(x2)|2 − [ψiψj ](x1)[ψjψi](x2)

)
,

=
1

2

∫
x1,x2

ρψ(x1)ρψ(x2)− |γψ(x1, x2)|2

|x1 − x2|
dx1dx2.

This ends the proof.

5.3. Proof of Prop. 8.

5.3.1. Strong continuity. The fact that E is ‖·‖H1-continuous follows from Hardy’s in-
equality. Let us deal for instance with the exchange term.

The function ψ 7→ X(γψ) is quartic in ψ (that is homogeneous of degree 4). By Hardy’s

inequality, the corresponding quadrilinear function is continuous from (H1(R3)N )4 to
R. Indeed, introducing:

Xp

(H1(R3)N )4 −→ R,
(τ, ϕ, χ, ψ) 7→

∫∫ τ(x)ϕ(x)χ(y)ψ(y)
|x−y| dxdy,
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we have:

|Xp(τ, ϕ, χ, ψ)| ≤
∫∫
|τ(x)ϕ(x)χ(y)ψ(y)|

|x− y|
dxdy,

≤

√∫∫
|τ(x)|2|χ(y)|2
|x− y|2

dxdy

∫∫
|ϕ(x)|2|ψ(y)|2dxdy,

≤ 2‖∇τ‖L2‖ϕ‖L2‖χ‖L2‖ψ‖L2 .

The other terms are dealt with in a similar manner.

5.3.2. Weak lower semi-continuity. Let us show that E is weakly lower semi-continuous.
Let ψ(n) ⇀ ψ in H1(R3)N . Up to extracting a subsequence, we can assume that

lim inf
n→+∞

E(ψ(n)) = lim
n→+∞

E(ψ(n)).

By Theorem 10, up to extracting a subsequence, we can assume that the sequence
(ψ(n))n converges in L2

loc(R3)N .

Similarly, up to extracting a subsequence14, we can assume that (ψ(n))n converges
almost everywhere in R3.

By the uniform boundedness principle15 for all 1 ≤ i ≤ n, we have:

‖∇ψi‖2L2 ≤ lim inf
n→+∞

‖∇ψ(n)
i ‖

2
L2 .

Similarly it gives: supn→+∞‖ψ
(n)
i ‖H1 ≤ C.

Secondly, for every A > 0, we have:∫ |ψ(n)
i (x)|2

|x−Rm|
dx =

∫
x:|x−Rm|≤A

|ψ(n)
i (x)|2

|x−Rm|
dx+

∫
x:|x−Rm|>A

|ψ(n)
i (x)|2

|x−Rm|
dx,

=

∫
x:|x−Rm|≤A

|ψ(n)
i (x)|2

|x−Rm|
dx+ O

A→+∞

(C
A

)
.

By the L2
loc-convergence, and using the fact that∫

x:|x−Rm|≤A

τ(x)ϕ(x)

|x−Rm|
dx ≤ 2‖∇τ‖L2(R3)‖ϕ‖L2(B(Rm,A)),

we get that:

lim
n→+∞

∫
x:|x−Rm|≤A

|ψ(n)
i (x)|2

|x−Rm|
dx =

∫
x:|x−Rm|≤A

|ψi(x)|2

|x−Rm|
dx.

Hence:

lim
n→+∞

∫
R3

V ‖ψ(n)‖2CN =

∫
R3

V ‖ψ‖2CN .

At last we deal with the direct and the exchange terms altogether. Recall (7): for
ϕ ∈ H1(R3)N there holds:

ρψ(x)ρψ(y)− |γψ(x, y)|2 ≥ 0.

By Fatou’s lemma we thus have:∫∫
ρψ(x)ρψ(y)− |γψ(x, y)|2

|x− y|
dxdy ≤ lim inf

n→+∞

∫∫
ρψ(n)(x)ρψ(n)(y)− |γψ(n)(x, y)|2

|x− y|
dxdy.

14Note that we have to use a diagonal extraction here.
15why?
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We thus have proved:

E(ψ) ≤ lim inf
n→+∞

E(ψ(n)).

5.3.3. Estimate. Let ψ ∈ K. The constraint gives:

‖ψ‖2L2 =

∫
ρψ ≤ N.

The fact that it is bounded from below follows from Hardy’s inequality.
First, by (7) we have D(ρψ)−X(γψ) ≥ 0, and for all 1 ≤ i ≤ N and ε > 0, we have:

zm

∫
|ψi(x)|2

|x−Rm|
≤ 2εzm‖∇ψi‖2L2 +

zm
2ε

∫
|ψi(x)|2dx.

Taking ε = (4Z)−1 for instance yields:

E(ψ) ≥ 1/2‖∇ψ‖L2 − 2Z2‖ψ‖2L2 .

For ψ ∈ K, we thus get the (crude) estimate:

‖ψ‖2H1 ≤ 2E(ψ) + (4Z2 + 1)N.

5.4. Proof of Thm 10. The usual proof of the theorem of Rellich-Kondrachov uses
the Lp(Rd)-version of Ascoli’s theorem.

Here as we deal with L2-functions, we will use an “elementary” tools to prove the
theorem, namely the Fourier transform on a torus Rd/(LZd) and the diagonal extraction.

Let (ψn)n be a sequence of functions in H1(Rd) which is H1-bounded. By banach-
Alaoglu, up to an extraction, we can assume that it converges H1-weakly to ψ ∈ H1(Rd).
Furthermore, by the unifom boundedness principle, we have:

sup
n
‖ψn‖H1 = C0 < +∞.

Let us show that there exists a subsequence of (ψn) which converges in L2
loc(Rd).

Let χ ∈ C∞0 (Rd, [0, 1]) such that supp χ ⊂ {x : |x| ≤ 2} and χ(x) = 1 for |x| ≤ 1. For
R ≥ 1, we introduce the function χR(x) := χ(x/R) and T2R the hypercube [−2R, 2R]d.

Aim: For every L ∈ N, we show that the sequence (χLψn)n converges in L2(T2L) up to
the extraction of a subsequence.

By a diagonal extraction argument, this will provide us with a subsequence (ψnk)k
such that for all n, the sequence (χLψnk)k converges in L2(T2L), which will end the
proof.

The key idea is that we can inject isometrically the Hilbert space H1
0 (T2L) into the

Hilbert space H1
per(T2L) of periodic functions in L2((Rd/(4LZd))) with an H1-regularity.

Thus we can see (χLψn)n as an H1-bounded sequence in H1
per(T2L). It is bounded

because [∇(χLψn)](x) = L−1∇χ(x/L)ψn +χL∇ψn. The same argument gives also that
the χLψn’s are uniformly H1-bounded in n and L ≥ 1, say by C2

1 .

We write T ∗2L := π
2LZ

d the dual of Rd/(2LZd). The Fourier transform defines an isom-

etry of L2
per(T2L) = L2((Rd/(4LZd))) onto `2(T ∗2L). The `2-element of an L2-function is

the collection of its Fourier modes:

ak(f) := (4L)−d/2
∫
T2L

f(x)e−ik·xdx, k ∈ T ∗2L.

We thus have:

‖f‖2L2(T2L) =
∑
k∈T ∗2L

|ak(f)|2.
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Similarly, we know that16

‖∇f‖2L2(T2L) =
∑
k∈T ∗2L

|k|2|ak(f)|2.

Here, we consider the Fourier modes of the functions χLψn, giving a family (ak,n)k,n.
Fixing k, the sequence (ak,n)n≥0 is bounded in C as we have:

|ak,n|2(1 + |k|2) ≤ ‖χLψn‖2H1 ≤ C2
1 .

Thus for every k, we can extract a converging subsequence (ak,n`)`≥0.

By a diagonal extraction, we can extract a subsequence (χLψn`)` such that for all k ∈
T ∗2L, the sequence (ak,n`)`≥0 is convergent (say to ak ∈ C). By the uniform boundedness
principle we also have: ∑

k

(1 + |k|2)|ak|2 < +∞.

Note that the ak’s are the Fourier modes of χLψ.

We show that the sequence
(
(ak,n`)k∈T ∗2L

)
`≥0

is convergent in `2(T ∗2L), which will end

the proof.
For A ≥ 1, we have:∑

k

|ak,n` − ak|
2 =

∑
k,
|k|≤A

|ak,n` − ak|
2 +

∑
k,
|k|>A

|ak,n` − ak|
2,

=
∑
k,
|k|≤A

|ak,n` − ak|
2 +

∑
k,
|k|>A

1 + |k|2

1 + |k|2
|ak,n` − ak|

2,

≤
∑
k,
|k|≤A

|ak,n` − ak|
2 +

2

1 +A2
(‖χLψn‖2H1 + ‖χLψ‖2H1).

taking the limsup yields:

lim sup
`→+∞

∑
k

|ak,n` − ak|
2 ≤ 4C2

1

1 +A2
.

As this holds for every A > 0 we obtain the convergence in `2(T ∗2L), and thus by isometry
the convergence in L2(T2L).
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