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Definition 1. Let f ∈ L2(Rn) be a real-valued function. We say that f is

• positive if f ≥ 0 a.e. and f 6= 0 (and with a little abuse of notation,
we will write f ≥ 0);

• strictly positive if f > 0 a. e. .

A bounded operator A is

• positivity preserving if for every positive f ∈ L2(Rn), Af is positive;

• positivity improving if for every positive f ∈ L2(Rn), Af is strictly
positive.

Moreover we say that A is real if maps real functions to real functions.

Remark 2 (Characterization of strictly positive functions). Note that there
is an easy characterization of the set of strictly positive functions. Namely,
a function f ∈ L2(Rn) is strictly positive if and only if

〈g, f〉 > 0 ∀g ≥ 0.

Indeed if g ≥ 0, then there exists a measurable set Ω with positive measure
such that g > 0 on Ω. Therefore

〈g, f〉 ≥
∫

Ω

fg > 0.

On the other hand, if 〈g, f〉 > 0 for all g ≥ 0, then f must be strictly posi-
tive, otherwise we could find a suitable positive function such that 〈g, f〉 = 0.
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Example 3 (Multiplication and convolution operator). Let g > 0. Then the
multiplication operator Af := gf is positivity preserving and the convolution
operator Af := g ∗ f is positivity improving.

More in general any integral operator with positive (strictly positive)
kernel is positivity preserving (positivity improving).

Before stating and proving the main theorem, we need the following pre-
liminary result about positivity.

Theorem 4. Let A ∈ L(L2(Rn)) be a self-adjoint positivity improving and
real operator. If ‖A‖ is an eigenvalue, then it is simple.

Proof. Firstly note that if ψ is an eigenfunction for an eigenvalue λ, then
both its real and imaginary part are eigenfunction associated to λ. Indeed

AReψ + iA Imψ = Aψ = λψ = λReψ + iλ Imψ

and since A is a real operator, AReψ and A Imψ are real-valued functions,
therefore

AReψ = λψ and A Imψ = λ Imψ.

So we can assume w.l.o.g. ψ to be real-valued. If we show that ψ does not
change sign, then we are done. Indeed if ψ does not change sign, we can
assume w.l.o.g. it is a positive function. Then it is an eigenfunction and
since A is positivity improving, ψ is a strictly positive function. Since two
strictly positive functions can not be orthogonal to each other, we have that
the eigenspace of ‖A‖ is 1-dimensional.

Let us show ψ does not change sign. Let ψ+ := |ψ|+ψ
2

and ψ− := |ψ|−ψ
2

be
the positive and negative part of ψ respectively. Then we have

|Aψ| = |Aψ+ − Aψ−| ≤ Aψ+ + Aψ− = A|ψ|.

From this inequality and assuming ‖ψ‖ = 1, it follows that

‖A‖ = ‖A‖〈ψ, ψ〉 = 〈ψ,Aψ〉

=

∫
Rn
ψAψ ≤

∫
Rn
|ψ||Aψ| ≤

∫
Rn
|ψ|A|ψ|

= 〈|ψ|, Aψ|〉 ≤ ‖A‖.

Therefore
〈ψ,Aψ〉 = 〈|ψ|, A|ψ|〉.

If we write out explicitly ψ using the positive and negative part and using
the fact that A is self-adjoint, then the previous equality becomes:

−2〈ψ−, Aψ+〉 = 2〈ψ−, Aψ+〉.

2



thus
〈ψ−, Aψ+〉 = 0.

This implies that ψ− = 0 or ψ+ = 0. Indeed assume by contradiction ψ+ 6= 0
and ψ+ 6= 0. Then this means ψ+ and ψ− are are both positive functions.
Since A is positivity improving, we have Aψ+ is strictly positive and from
Remark 2 we have 〈ψ−, Aψ+〉 > 0 which is a contradiction.

We will use Theorem 4 to show the following result.

Theorem 5 (Uniqueness of the ground state). Let H = H0 + V be an
essentially self-adjoint operator bounded from below with C∞c (Rn) as a core
(H0 = −∆).

If E0 = minσ(H) is an eigenvalue, it is simple and the corresponding
eigenfunction is strictly positive.

The idea of the proof is to apply Theorem 4 to the resolvent RH(λ).
The biggest part of the work will be to show that the resolvent is positivity
improving.

Before giving the proof of Theorem 5, let us recall some concept and
results that we will need.

Definition 6 (Strong resolvent convergence). Let (An)n∈N be a sequence
of self-adjoint operators and let A be a self-adjoint operator. We say that
(An)n∈N converges to A in the strong resolvent sense, and we will write
An

SR−→ A, if there exists z ∈ C \ R such that

s-limn→∞RAn(z) = RA(z),

i.e. if the sequence of resolvents of the operators An strongly converge to the
resolvent of A.

For a strong resolvent convergence sequence, the following property holds.

Theorem 7. Let An
SR−→ A and let f a bounded and continuous function

defined on R. Then
s-limn→∞ f(An) = f(A).

Proof. For a proof, see Theorem VIII.20 in [2].

Another tool needed for proving Theorem 5 is the Trotter formula.
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Theorem 8 (Trotter product formula). Let A and B be self-adjoint operators
bounded from below. Then

e−t(A+B) = s-limn→∞

(
e−

t
n
Ae−

t
n
B
)n
, t ≥ 0. (1)

Proof. See Theorem 5.12 in [3] and the previous seminar talk.

We can finally prove Theorem 5.

Proof of Theorem 5. Step 1: e−tH is positivity preserving for t > 0.
Let us define new operators Hn as follows

Hn := H0 + Vn,

where Vn := V χ{x∈Rn:|V (x)|≤n}. Observe that Vn is bounded.
Recall that we have an explicit formula for e−tH0 , i.e.(

e−tH0ψ
)

(x) = e−
π
4
x 1

(2π|t|)n2

∫
Rn
e

(x−y)2
2t ψ(y) dy.

Therefore the operator e−tH0 is the convolution with a strictly positive func-
tion, therefore it is positivity improving.

Moreover the multiplication operator(
e−tVnψ

)
(x) = e−tVnψ(x)

is positivity preserving, because it is the product with a strictly positive
function.

Let ψ be a positive function. Then we have that for every k ∈ N(
e−

t
k
H0e−

t
k
Vn
)k
ψ

is a strictly positive function. This implies, using Theorem 8, that

e−tHnψ = s-limk→∞

(
e−

t
k
H0e−

t
k
Vn
)k
ψ

is non-negative a.e. . On the other hand, e−tHnψ 6= 0, because the operator is
injective. Therefore e−tHnψ is a positive function, and thus e−tHn a positivity
preserving operator.

Now we show that Hn
SR−→ H.

Firstly observe that for every ψ ∈ C∞c (Rn), we have

‖ (H −Hn)ψ‖2 =

∫
Rn
|V |2|ψ|2

(
1− χ{|V |≤n}

)
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and since V ∈ L2
loc(Rn), we can apply the Dominated Convergence Theorem

and we get that
Hnψ −→ Hψ ∀ψ ∈ C∞c (Rn).

We need to show that (Hn − i)−1 converges strongly to (H − i)−1. Let
ψ ∈ C∞c (Rn) and let φ = (H + i)ψ

‖
(
(Hn − i)−1 − (H − i)−1)φ‖ = ‖ (Hn − i)−1 (H −Hn)ψ‖

≤ ‖ (Hn − i)−1 ‖‖ (H −Hn)ψ‖.

Observe that ‖ (Hn − i)−1 ‖ ≤ 1 for every n ∈ N (see for example Theorem
2.19 in [3] or Lemma 2.3 in [1]). Therefore we have

‖
(
(Hn − i)−1 − (H − i)−1)φ‖ ≤ ‖ (H −Hn)ψ‖ −→

n→∞
0.

Thus we proved that (Hn − i)−1 converges to (H − i)−1 on Ran(H + i).
Since A is essentially self-adjoint, Ran(H + i) is dense in L2(Rn) (see for
instance the corollary of Theorem VIII.3 in [2]). This implies that that
(Hn − i)−1 converges strongly to (H − i)−1.

From Theorem 7 we have that e−tHn is strongly converging to e−tH .
Therefore e−tHφ is a a.e. non-negative function, for every positive φ. On
the other hand e−tHφ 6= 0. Thus e−tH is positivity preserving.

Step 2: e−tH is positivity improving for t > 0.
Let us fix a positive function ψ and consider the following closed subset

of L2(Rn):

N(ψ) := {φ ∈ L2(Rn) : φ ≥ 0 and 〈φ, e−sHψ〉 = 0, ∀s > 0} ∪ {0}.

Observe that etVn (N(ψ)) ⊂ N(ψ), for every t > 0. Indeed let φ ∈ N(ψ).
Then for every s > 0 we have, by positivity of the functions,

φe−sHψ = 0 a. e.

and multiplying by etVn we trivially have

etVnφe−sHψ = 0 a. e.

and thus etVnφ ∈ N(ψ).
Moreover we have also that e−tH (N(ψ)) ⊂ N(ψ) for t > 0. Indeed if

φ ∈ N(ψ), then for every s > 0:

0 = 〈φ, e−(t+s)Hψ〉 = 〈e−tHφ, e−sHψ〉.
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So we have that the set N(ψ) is invariant set w.r.t. the operators etVn and
e−tH . We want to show that it is invariant also w.r.t. e−tH0 . Let φ ∈ N(ψ)
and let s > 0. Then using again Theorem 8, we have:

0 = lim
k→∞
〈
(
e−

t
k
He

t
k
Vn
)k
φ, e−sHψ〉 = 〈e−t(H−Vn)φ, e−sHψ〉.

Therefore e−t(H−Vn)φ ∈ N(ψ). Since e−t(H−Vn) converges strongly to e−tH0

we have that e−tH0φ ∈ N(ψ). Therefore N(ψ) is invariant w.r.t. e−tH0 . This
implies that N(ψ) = {0}. Indeed assume by contradiction that there exists
a positive function φ ≥ 0 in N(ψ). Since e−tH0 is positivity improving, we
have that e−tH0φ > 0. By Remark 2 we have that for every s > 0:

〈e−tH0φ, e−sH0ψ〉 > 0

but this is a contradiction because 〈e−tH0φ, e−sH0ψ〉 = 0, since e−tH0φ ∈
N(ψ).

Therefore e−tH is positivity improving.
Step 3: the resolvent RH(λ) is positivity improving for λ < E0.
Observe that from Lemma 4.1 in [3] we can express the resolvent in the

following way:

〈φ,RH(λ)ψ〉 =

∫ ∞
0

eλt〈φ, e−tHψ〉 dt

where λ < E0. This can also be done in a similar way to the proof of
Theorem 4.2(Stone’s Theorem) in [1] or using the functional calculus. If φ
and ψ are both positive functions, then the right-hand side is clearly strictly
positive. From Remark 2, this implies that RH(λ) is positivity improving.

Step 4: conclusion.
Now let ψ be an eigenfunction of H, i.e.

Hψ = Eψ,

for an eigenvalue E. Then

RH(λ)ψ = (H − λ)−1ψ

= (H − λ)−1

(
Eψ

E

)
= (H − λ)−1

(
(H − λ)ψ + λψ

E

)
=
ψ

E
+
λ

E
RH(λ)ψ
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Therefore
RH(λ)ψ =

(
1

E − λ

)
ψ.

Moreover

‖RH(λ)‖ = sup
‖φ‖=1

|〈RH(λ)φ, φ〉| = sup |σ(RH(λ))| = 1

E0 − λ
.

From Theorem 4, the (real part and imaginary part of the) eigenfunctions
of RH(λ) associated to 1

E0−λ do not change sign and those are exactly the
eigenfunctions of H associated to E0. Thus E0 is simple.
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