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Definition 1. Let f € L*(R") be a real-valued function. We say that f is

e positive if f > 0 a.e. and f # 0 (and with a little abuse of notation,
we will write f > 0);

e strictly positive if f >0 a.e. .
A bounded operator A is
e positivity preserving if for every positive f € L*(R"™), Af is positive;

e positivity improving if for every positive f € L?(R™), Af is strictly
positive.

Moreover we say that A is real if maps real functions to real functions.

Remark 2 (Characterization of strictly positive functions). Note that there
is an easy characterization of the set of strictly positive functions. Namely,
a function f € L*(R™) is strictly positive if and only if

(9,f) >0  Vg=>0.

Indeed if g > 0, then there exists a measurable set {2 with positive measure
such that g > 0 on ). Therefore

(9, 1) Z/Qfg>0-

On the other hand, if (g, f) > 0 for all g > 0, then f must be strictly posi-
tive, otherwise we could find a suitable positive function such that (g, f) = 0.
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Example 3 (Multiplication and convolution operator). Let g > 0. Then the
multiplication operator Af := gf is positivity preserving and the convolution
operator Af := g * f is positivity improving.

More in general any integral operator with positive (strictly positive)
kernel is positivity preserving (positivity improving).

Before stating and proving the main theorem, we need the following pre-
liminary result about positivity.

Theorem 4. Let A € L(L*(R™)) be a self-adjoint positivity improving and
real operator. If ||Al| is an eigenvalue, then it is simple.

Proof. Firstly note that if ¢ is an eigenfunction for an eigenvalue A, then
both its real and imaginary part are eigenfunction associated to A. Indeed

ARet) +iAImy = Ah = A\ = ARerp + iAIm )

and since A is a real operator, ARe1 and AIm are real-valued functions,
therefore
ARey) = M\ and Alm¢ = AImp.

So we can assume w.l.o.g. ¥ to be real-valued. If we show that ¢ does not
change sign, then we are done. Indeed if 1) does not change sign, we can
assume w.l.o.g. it is a positive function. Then it is an eigenfunction and
since A is positivity improving, v is a strictly positive function. Since two
strictly positive functions can not be orthogonal to each other, we have that
the eigenspace of || Al| is 1-dimensional.

Let us show 1 does not change sign. Let v, = WY and Yo = WY b
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the positive and negative part of ¢ respectively. Then we have

|AY| = |Apy — AY_| < Apy + Ay = Al].

From this inequality and assuming ||¢|| = 1, it follows that
Al = 1 All{, ¥) = (¥, AY)
— [ wav< [ wllavi< [ i
Rn R™ Rr
= ([v], A¢[) < [[A]l.

Therefore
(v, Ay = ([v], Al ).

If we write out explicitly v using the positive and negative part and using
the fact that A is self-adjoint, then the previous equality becomes:

_2<¢—7 A’QD+> = 2<77b—a A¢+>
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thus
(-, Apy) = 0.

This implies that ¢ = 0 or ¢, = 0. Indeed assume by contradiction ¢, # 0
and ¥, # 0. Then this means ¢, and 1_ are are both positive functions.
Since A is positivity improving, we have A, is strictly positive and from
Remark [2| we have (¢_, A1, ) > 0 which is a contradiction.

O

We will use Theorem [4] to show the following result.

Theorem 5 (Uniqueness of the ground state). Let H = Hy+V be an
essentially self-adjoint operator bounded from below with C°(R™) as a core
(Hy = —A).

If Ey = mino(H) is an eigenvalue, it is simple and the corresponding
eigenfunction is strictly positive.

The idea of the proof is to apply Theorem 4| to the resolvent Ry ().
The biggest part of the work will be to show that the resolvent is positivity
improving.

Before giving the proof of Theorem [f] let us recall some concept and
results that we will need.

Definition 6 (Strong resolvent convergence). Let (A,).eny be a sequence
of self-adjoint operators and let A be a self-adjoint operator. We say that
(An)nen converges to A in the strong resolvent sense, and we will write

A, 25 A, if there exists 2z € C \ R such that
s-lim, 00 Ra, (2) = Ra(2),

i.e. if the sequence of resolvents of the operators A, strongly converge to the
resolvent of A.

For a strong resolvent convergence sequence, the following property holds.

Theorem 7. Let A, SR A and let f a bounded and continuous function
defined on R. Then

s-limy, o0 f(An) = f(A).
Proof. For a proof, see Theorem VIII.20 in [2]. O

Another tool needed for proving Theorem [5|is the Trotter formula.
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Theorem 8 (Trotter product formula). Let A and B be self-adjoint operators
bounded from below. Then

Proof. See Theorem 5.12 in [3] and the previous seminar talk. ]
We can finally prove Theorem [5

Proof of Theorem[5. Step 1: e is positivity preserving for ¢ > 0.
Let us define new operators H,, as follows

Hn = HO + Vna

where V,, = VX {zern:|v(2)|<n}. Observe that V;, is bounded.
Recall that we have an explicit formula for e7* i.e.

—tHy Ty 1 Lﬁ
(e7oyp) (z) = 7% W/ne( " Y(y) dy.

Therefore the operator e~ is the convolution with a strictly positive func-
tion, therefore it is positivity improving.
Moreover the multiplication operator

<€_tV"1/J) ($) — e_tV"@D(ZU)

is positivity preserving, because it is the product with a strictly positive
function.
Let ¢ be a positive function. Then we have that for every k € N

i, —ty k
(e7tmetin) o
is a strictly positive function. This implies, using Theorem |8 that
k
ey = s limy_ o (e_%HOe_%V") (0

is non-negative a.e. . On the other hand, e~*n¢) # 0, because the operator is
injective. Therefore e~**71) is a positive function, and thus e *» a positivity
preserving operator.

Now we show that H, SRy,

Firstly observe that for every ¢» € C°(R"), we have

I =)ol = [ VIS (1= xqvien)



and since V € L? (R"), we can apply the Dominated Convergence Theorem

and we get that
H,p — Hv Vi € C°(R™).

We need to show that (H, — i)~ converges strongly to (H —i)~!. Let
€ C(R™) and let ¢ = (H + i)y

I (H =) = (H =) ) ol = || (H =)' (H — Hy)
< |V (Ha =) I (H = Hy) 9.

Observe that || (H, —i)~"|| < 1 for every n € N (see for example Theorem
2.19 in [3] or Lemma 2.3 in [I]). Therefore we have

| (o =)™ = (H =07 ol < || (H — Ha) o]l — 0.

Thus we proved that (H,, —i)~! converges to (H —i)~! on Ran(H + 1).
Since A is essentially self-adjoint, Ran(H + i) is dense in L*(R") (see for
instance the corollary of Theorem VIIL.3 in [2]). This implies that that
(H, — i)~ converges strongly to (H —1i)~ .

From Theorem (7| we have that e~/ is strongly converging to e~
Therefore e ¢ is a a.e. non-negative function, for every positive ¢. On
the other hand e "¢ # 0. Thus e " is positivity preserving.

Step 2: e ' is positivity improving for t > 0.

Let us fix a positive function 1) and consider the following closed subset
of L2(R"):

tH

N@W)={pc L*R"):¢>0 and (¢,e ) =0, Vs>0}U{0}.

Observe that eV (N(¢)) C N(1), for every t > 0. Indeed let ¢ € N(3).
Then for every s > 0 we have, by positivity of the functions,

e Hap =0 a.e.
and multiplying by eV» we trivially have
eVrpe sy = a. e.

and thus V"¢ € N(¢).
Moreover we have also that e *# (N(v))) C N(¢) for t > 0. Indeed if
¢ € N (), then for every s > 0:

0= <¢’ e—(t+s)H¢> _ <6_tH¢,€_SH1/J>.
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So we have that the set N(¢) is invariant set w.r.t. the operators e!'» and
e~ We want to show that it is invariant also w.r.t. e o, Let ¢ € N(v)
and let s > 0. Then using again Theorem [, we have:

0 — lim<<e LH ) ¢, e 1) = (e —t(H-Va) g e=sH )

k—o0

Therefore e # 7=V ¢ N(1)). Since e =V2) converges strongly to e Ho

we have that e *#0¢ € N(¢)). Therefore N (1)) is invariant w.r.t. e 0. This
implies that N(¢) = {0}. Indeed assume by contradiction that there exists
a positive function ¢ > 0 in N(¢). Since e ' is positivity improving, we
have that e~"0¢ > 0. By Remark [2] we have that for every s > 0:

(e’“%(b, e’SHow >0

but this is a contradiction because (e~tH0¢p e=5Hoy)) = 0, since e og €
N©).

Therefore e™*** is positivity improving.

Step 3: the resolvent Ry()\) is positivity improving for A\ < Ej.

Observe that from Lemma 4.1 in [3] we can express the resolvent in the
following way:

tH

(6, Ru(\) = / " Mg, ey di

where A < Ej,. This can also be done in a similar way to the proof of
Theorem 4.2(Stone’s Theorem) in [I] or using the functional calculus. If ¢
and 1 are both positive functions, then the right-hand side is clearly strictly
positive. From Remark [2] this implies that Ry () is positivity improving.
Step 4: conclusion.
Now let ¢ be an eigenfunction of H, i.e.

Hip = E,

for an eigenvalue E. Then

Ry(M\)y = -

?%)
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Therefore

Moreover

1
By — A\

[Ra(N)] = Sup (B (A)¢, §)| = sup [0 (R ()]

From Theorem , the (real part and imaginary part of the) eigenfunctions

of Ry()\) associated to ﬁ do not change sign and those are exactly the

eigenfunctions of H associated to Ey. Thus Fj is simple. O
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