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This note follows closely Reed and Simon [1]. We let H denote a seperable Hilbert space,
and L(H) denotes the set of bounded linear operators on H.

Definition 1. Let U ⊂ C be open. An operator-valued function L : U → L(X) is called
analytic if the complex-valued function given by

z 7→ f(L(z)x), for all z ∈ U,

is analytic for all x ∈ X and for all f ∈ X∗.

Lemma 1 (Neumann series). Let X be a Banach space and let T ∈ L(X). If ||T || < 1 then
I − T is bijective and the inverse is bounded. Moreover

(I − T )−1 =
∞∑
n=0

Tn.

Theorem 2 (Analytic Fredholm theorem). Let U be an open connected subset of C. Let
L : U → L(H) be an analytic operator-valued function such that L(z) is compact for each
z ∈ U . Then either (I − L(z))−1 exists for no z ∈ U or for all z ∈ U\S, where S is a
discrete subset of U . In the latter case (I − L(z))−1 is meromorphic in U , analytic in U\S,
the residues at the poles are finite rank operators, and if z ∈ S then L(z)ψ = ψ has a nonzero
solution in H.

Proof. Let z0 ∈ U and choose r > 0 such thatBr(z0) ⊂ U and such that ||L(z)− L(z0)|| < 1/2
whenever |z − z0| < r. This is possible since U is open and since L is analytic and hence
continuous. Since the finite rank operators are dense in the compact operators, we can pick
an operator F of finite rank such that ||L(z0)− F || < 1/2. Then ||L(z)− F || < 1 for all
z ∈ Br(z0). It follows by lemma 1 that I − L(z) + F is invertible and

(I − L(z) + F )−1 =

∞∑
n=0

(L(z)− F )n.

Since z 7→ L(z) is analytic by assumption, z 7→ (I − L(z) + F )−1 is clearly analytic as well.
As F has finite rank we can find linearly independent vectors ψ1, ψ2, . . . , ψN ∈ H such

that F (ϕ) =
∑N

i=1 αi(ϕ)ψi. for all ϕ ∈ H. For each 1 ≤ i ≤ N , αi is a bounded linear
functional on H, so by Riesz we can find a vector ξi ∈ H such that αi( · ) = 〈ξi , · 〉. Then

F (ϕ) =
N∑
i=1

〈ξi , ϕ〉ψi, for all ϕ ∈ H.

Define ξi(z) := ((I − L(z) + F )−1)∗ξi ∈ H and define G(z) ∈ L(H) by

G(z)ϕ = F (I − L(z) + F )−1ϕ =

N∑
i=1

〈
ξi , (I − L(z) + F )−1ϕ

〉
ψi =

N∑
i=1

〈ξi(z) , ϕ〉ψi.
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for all ϕ ∈ H. We can now write

I − L(z) = (I −G(z))(I − L(z) + F ), (1)

and it is clear that I − L(z) is invertible if and only if I − G(z) is invertible, and that
L(z)ψ = ψ has a nonzero solution if and only if G(z)ϕ = ϕ has a nonzero solution.

The set {ψi : 1 ≤ i ≤ N} can be expanded to an orthogonal basis for H, and we can
write any ϕ ∈ H as ϕ =

∑∞
i=1 βiψi. Suppose ϕ is a solution to G(z)ϕ = ϕ. Then

N∑
i=1

〈ξi(z) , ϕ〉ψi =
∞∑
i=1

βiψi,

hence we must have βi = 0 for i > N . Moreover

N∑
i,j=1

βj 〈ξi(z) , ψj〉ψi =
N∑
i=1

〈
ξi(z) ,

N∑
j=1

βjψj

〉
ψi =

N∑
i=1

βiψi,

so by linear independence we get that βi satisfies the linear equation

βi =
N∑
j=1

βj 〈ξi(z) , ψj〉 , (2)

for each 1 ≤ i ≤ N . Conversely if equation (2) is satisfied, then ϕ =
∑N

i=1 βiψi is a solution
to G(z)ϕ = ϕ. Now equation (2) has a non-trivial solution if and only if

d(z) := det[δij − 〈ξi(z) , ψj〉]i,j = 0.

Recall that (I − L(z) + F )−1 is analytic in Br(z0), ξi is a vector in H and ψ 7→ 〈ξi , ψ〉 is a
linear functional on H. Thus z 7→ 〈ξi(z) , ψj〉 is analytic in Br(z0), and then so is d(z). It
is a result from complex analysis (theorem 6.3 in [2]) that either the set of zeroes of d(z) is
discrete, or d(z) is constant zero, i.e., if we let Sr := {z ∈ Br(z0) : d(z) = 0}, then Sr is
either a discrete set or Sr = Br(z0).

Now I − G(z) is invertible if and only if given η ∈ H we can find ϕ ∈ H such that
(I − G(z))ϕ = η. We may without loss of generality write ϕ = η +

∑∞
i=1 βiψi. Clearly for

ϕ to be a solution to (I − G(z))ϕ = η we need to have βi = 0 for i > N . So consider the
vector ϕ = η +

∑N
i=1 βiψi in H.

(I −G(z))ϕ = η +
N∑
i=1

βiψi −
N∑
i=1

〈ξi(z) , η〉ψi −
N∑

i,j=1

βj 〈ξi(z) , ψj〉ψi.

Then ϕ is a solution to (I −G(z))ϕ = η if and only if for each 1 ≤ i ≤ N

βi − 〈ξi(z) , η〉 −
N∑
j=1

βj 〈ξi(z) , ψj〉 = 0.

Define the N ×N -matrix

M(z) := (I − [〈ξi(z) , ψj〉]i,j),

and note that M(z) is an analytic operator on the finite dimensional vector space CN .
Notice also that d(z), that we defined previously, is the determinant of M(z). By letting
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α(z, η) = (〈ξ1(z) , η〉 , . . . , 〈ξN (z) , η〉) ∈ CN and β = (β1, . . . , βN ) ∈ CN we can write the
above in the slightly more illuminating form

M(z)β = α(z, η).

We see that this has a non-trivial solution if and only if d(z) 6= 0. Hence I − G(z), and
thereby I − L(z), is invertible if and only if z /∈ Sr. Since I − L(z) is analytic in Br(z0),
(I − L(z))−1 is analytic in Br(z0)\Sr.

In the case where Sr is a discrete subset of Br(z0) and z /∈ Sr we have

β = M(z)−1α(z, η).

The inverse of M(z) is given by A(z)/d(z), where A(z) = [aij ]
N
i,j=1 is the adjugate matrix,

i.e., the transpose of the matrix of cofactors. The entries of A(z), aij for 1 ≤ i, j ≤ N , are
also polynomials in the entries of M(z). Hence M(z)−1 is analytic in Br(z0)\Sr. From the
vector β we obtain (I − G(z))−1η = η +

∑N
i=1 βiψi. This operator is analytic in Br(z0)\Sr

and its singularities are the points of Sr. Define the operator K(z) := (I −G(z))−1 − I.

K(z)η =
N∑
i=1

βiψi =
N∑
i=1

 1

d(z)

N∑
j=1

aij(z) 〈ξj(z) , η〉

ψi.

It is clear that the image of K(z) is a supspace of the vector space spanned by ψ1, . . . , ψN .
Hence K(z) has finite rank. Recall that d(z) is the determinant of M(z), and recall that
d(z) is a non-trivial analytic function and that Sr is its zero set. In particular for zc ∈ Sr,
there exist an integer nc ≥ 1 and an analytic function g : Brc(zc) → C with g(0) 6= 0 such
that

d(z) = (z − zc)ncg(z), for z ∈ Brc(zc).

Hence the following limit

lim
z→zc

(z − zc)nc(I −G(z))−1 = lim
z→z0

(z − zc)n0K(z)

exists and is a non-zero operator. Also zc is a pole for (I −G(z))−1 which has order smaller
than nc. We conclude that (I − G(z))−1 is meromorphic in Br(z0). From equation (1) we
conclude, that the same is true for L. Moreover it is clear that the above limit is of finite
rank, and the limit lim

z→zj
(z − zj)a

′
j (I − L(z))−1 is then of finite rank as well, as the set of

finite rank operators form an ideal.
To finish the proof we need to extend to U the above discussion. We have shown that

for all z0 ∈ U , there exists a ball Br(z0) ⊂ U such that

• Either (I − L(z))−1 is meromorphic on Br(z0),

• Or (I − L(z))−1 does not exist at all on Br(z0).

The set of points satisfying the first proposition (resp. the second) is open by construction.
Both are closed because if we consider a sequence zn → z0 ∈ U with, then z0 is in one of
these two sets, and the zn’s are in the corresponding ball Br(z0) for n large enough.

As U is connected, this implies that one of these two sets coincides with U and the other
one is empty.

Corollary 3 (the Fredholm alternative). If A is a compact operator on H, then either
(I −A)−1 exists or Aψ = ψ has a solution.
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Proof. Define L(z) : C → L(H) by L(z) = zA. Then L(z) is an analytic operator-valued
function such that L(z) is compact for each z ∈ C. Hence the above theorem applies. In
particular we get the statement of the Fredholm alternative at z = 1.

The following theorem by Riesz and Schauder may also be proved using the framework
we have developed in this note.

Theorem 4 (Riesz-Schauder theorem). Let A be a compact operator on H. Then σ(A) is a
discrete set with no limit points except perhaps zero. Moreover any non-zero λ ∈ σ(A) is an
eigenvalue of finite multiplicity.

Proof. Define L(z) : C → L(H) by L(z) = zA. Then L(z) is an analytic operator-valued
function such that L(z) is compact for each z ∈ C. The set C := {z ∈ C : zAψ =
ψ has a solution ψ 6= 0} is discrete by the proof of theorem 2 since it does not contain z = 0.
It is even so, that all points are isolated. Moreover if 1/λ is not in C then (I − A/λ) is
invertible, and then so is (λ−A). To see this, note that

(λ−A)−1 =
1

λ

(
I − 1

λ
A

)−1
.

Hence λ /∈ σ(A). By contraposition λ ∈ σ(A) implies 1/λ ∈ C. As C is discrete we conclude
that σ(A) is discrete as well. Further if z ∈ C was a non-zero limit point of σ(A), then 1/z
would be a limitpoint of C. As all points in C are isolated, only z = 0 can be a limitpoint
of σ(A).

Suppose λ ∈ σ(A) is an eigenvalue of A, and suppose for contradiction that the corre-
sponding eigenspace where infinite dimensional. Let {ψi}∞i=1 be the set of linearly indepen-
dent eigenvectors, and let S = span{ψi : i ≥ 1} ∩ (H)1 be all vectors in the span of the
eigenvectors of length less than or equal to one. Since A is compact and S is bounded the
closure of the image of S under A is compact. But

A(S) = λS,

and S is the closed unitball of the infinite dimensional Banach space span{ψi : i ≥ 1}. Hence
every non-zero eigenvalue of A has finite multiplicity.
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