Seminar talk: The Fredholm Alternative

Advanced Mathematical Physics

Emilie Mai Elkiær May 5, 2017

This note follows closely Reed and Simon [1]. We let \mathcal{H} denote a seperable Hilbert space, and $\mathcal{L}(\mathcal{H})$ denotes the set of bounded linear operators on \mathcal{H} .

Definition 1. Let $U \subset \mathbb{C}$ be open. An operator-valued function $L : U \to \mathcal{L}(X)$ is called *analytic* if the complex-valued function given by

$$z \mapsto f(L(z)x), \quad \text{for all } z \in U,$$

is analytic for all $x \in X$ and for all $f \in X^*$.

Lemma 1 (Neumann series). Let X be a Banach space and let $T \in \mathcal{L}(X)$. If ||T|| < 1 then I - T is bijective and the inverse is bounded. Moreover

$$(I - T)^{-1} = \sum_{n=0}^{\infty} T^n.$$

Theorem 2 (Analytic Fredholm theorem). Let U be an open connected subset of \mathbb{C} . Let $L: U \to \mathcal{L}(\mathcal{H})$ be an analytic operator-valued function such that L(z) is compact for each $z \in U$. Then either $(I - L(z))^{-1}$ exists for no $z \in U$ or for all $z \in U \setminus S$, where S is a discrete subset of U. In the latter case $(I - L(z))^{-1}$ is meromorphic in U, analytic in $U \setminus S$, the residues at the poles are finite rank operators, and if $z \in S$ then $L(z)\psi = \psi$ has a nonzero solution in \mathcal{H} .

Proof. Let $z_0 \in U$ and choose r > 0 such that $B_r(z_0) \subset U$ and such that $||L(z) - L(z_0)|| < 1/2$ whenever $|z - z_0| < r$. This is possible since U is open and since L is analytic and hence continuous. Since the finite rank operators are dense in the compact operators, we can pick an operator F of finite rank such that $||L(z_0) - F|| < 1/2$. Then ||L(z) - F|| < 1 for all $z \in B_r(z_0)$. It follows by lemma 1 that I - L(z) + F is invertible and

$$(I - L(z) + F)^{-1} = \sum_{n=0}^{\infty} (L(z) - F)^n.$$

Since $z \mapsto L(z)$ is analytic by assumption, $z \mapsto (I - L(z) + F)^{-1}$ is clearly analytic as well.

As F has finite rank we can find linearly independent vectors $\psi_1, \psi_2, \ldots, \psi_N \in \mathcal{H}$ such that $F(\varphi) = \sum_{i=1}^N \alpha_i(\varphi)\psi_i$. for all $\varphi \in \mathcal{H}$. For each $1 \leq i \leq N$, α_i is a bounded linear functional on \mathcal{H} , so by Riesz we can find a vector $\xi_i \in \mathcal{H}$ such that $\alpha_i(\cdot) = \langle \xi_i, \cdot \rangle$. Then

$$F(\varphi) = \sum_{i=1}^{N} \langle \xi_i, \varphi \rangle \psi_i, \quad \text{for all } \varphi \in \mathcal{H}.$$

Define $\xi_i(z) := ((I - L(z) + F)^{-1})^* \xi_i \in \mathcal{H}$ and define $G(z) \in \mathcal{L}(\mathcal{H})$ by

$$G(z)\varphi = F(I - L(z) + F)^{-1}\varphi = \sum_{i=1}^{N} \left\langle \xi_i , (I - L(z) + F)^{-1}\varphi \right\rangle \psi_i = \sum_{i=1}^{N} \left\langle \xi_i(z) , \varphi \right\rangle \psi_i.$$

for all $\varphi \in \mathcal{H}$. We can now write

$$I - L(z) = (I - G(z))(I - L(z) + F),$$
(1)

and it is clear that I - L(z) is invertible if and only if I - G(z) is invertible, and that $L(z)\psi = \psi$ has a nonzero solution if and only if $G(z)\varphi = \varphi$ has a nonzero solution.

The set $\{\psi_i : 1 \leq i \leq N\}$ can be expanded to an orthogonal basis for \mathcal{H} , and we can write any $\varphi \in \mathcal{H}$ as $\varphi = \sum_{i=1}^{\infty} \beta_i \psi_i$. Suppose φ is a solution to $G(z)\varphi = \varphi$. Then

$$\sum_{i=1}^{N} \left\langle \xi_i(z) , \varphi \right\rangle \psi_i = \sum_{i=1}^{\infty} \beta_i \psi_i,$$

hence we must have $\beta_i = 0$ for i > N. Moreover

$$\sum_{i,j=1}^{N} \beta_j \left\langle \xi_i(z), \psi_j \right\rangle \psi_i = \sum_{i=1}^{N} \left\langle \xi_i(z), \sum_{j=1}^{N} \beta_j \psi_j \right\rangle \psi_i = \sum_{i=1}^{N} \beta_i \psi_i,$$

so by linear independence we get that β_i satisfies the linear equation

$$\beta_i = \sum_{j=1}^N \beta_j \left\langle \xi_i(z) , \psi_j \right\rangle, \tag{2}$$

for each $1 \leq i \leq N$. Conversely if equation (2) is satisfied, then $\varphi = \sum_{i=1}^{N} \beta_i \psi_i$ is a solution to $G(z)\varphi = \varphi$. Now equation (2) has a non-trivial solution if and only if

$$d(z) := \det[\delta_{ij} - \langle \xi_i(z), \psi_j \rangle]_{i,j} = 0.$$

Recall that $(I - L(z) + F)^{-1}$ is analytic in $B_r(z_0)$, ξ_i is a vector in \mathcal{H} and $\psi \mapsto \langle \xi_i, \psi \rangle$ is a linear functional on \mathcal{H} . Thus $z \mapsto \langle \xi_i(z), \psi_j \rangle$ is analytic in $B_r(z_0)$, and then so is d(z). It is a result from complex analysis (theorem 6.3 in [2]) that either the set of zeroes of d(z) is discrete, or d(z) is constant zero, i.e., if we let $S_r := \{z \in B_r(z_0) : d(z) = 0\}$, then S_r is either a discrete set or $S_r = B_r(z_0)$.

Now I - G(z) is invertible if and only if given $\eta \in \mathcal{H}$ we can find $\varphi \in \mathcal{H}$ such that $(I - G(z))\varphi = \eta$. We may without loss of generality write $\varphi = \eta + \sum_{i=1}^{\infty} \beta_i \psi_i$. Clearly for φ to be a solution to $(I - G(z))\varphi = \eta$ we need to have $\beta_i = 0$ for i > N. So consider the vector $\varphi = \eta + \sum_{i=1}^{N} \beta_i \psi_i$ in \mathcal{H} .

$$(I - G(z))\varphi = \eta + \sum_{i=1}^{N} \beta_i \psi_i - \sum_{i=1}^{N} \langle \xi_i(z), \eta \rangle \psi_i - \sum_{i,j=1}^{N} \beta_j \langle \xi_i(z), \psi_j \rangle \psi_i.$$

Then φ is a solution to $(I - G(z))\varphi = \eta$ if and only if for each $1 \le i \le N$

$$\beta_i - \langle \xi_i(z), \eta \rangle - \sum_{j=1}^N \beta_j \langle \xi_i(z), \psi_j \rangle = 0.$$

Define the $N\times N\text{-matrix}$

$$M(z) := (I - [\langle \xi_i(z), \psi_j \rangle]_{i,j}),$$

and note that M(z) is an analytic operator on the finite dimensional vector space \mathbb{C}^N . Notice also that d(z), that we defined previously, is the determinant of M(z). By letting $\alpha(z,\eta) = (\langle \xi_1(z),\eta\rangle,\ldots,\langle \xi_N(z),\eta\rangle) \in \mathbb{C}^N$ and $\beta = (\beta_1,\ldots,\beta_N) \in \mathbb{C}^N$ we can write the above in the slightly more illuminating form

$$M(z)\beta = \alpha(z,\eta).$$

We see that this has a non-trivial solution if and only if $d(z) \neq 0$. Hence I - G(z), and thereby I - L(z), is invertible if and only if $z \notin S_r$. Since I - L(z) is analytic in $B_r(z_0)$, $(I - L(z))^{-1}$ is analytic in $B_r(z_0) \setminus S_r$.

In the case where S_r is a discrete subset of $B_r(z_0)$ and $z \notin S_r$ we have

$$\beta = M(z)^{-1}\alpha(z,\eta).$$

The inverse of M(z) is given by A(z)/d(z), where $A(z) = [a_{ij}]_{i,j=1}^N$ is the adjugate matrix, i.e., the transpose of the matrix of cofactors. The entries of A(z), a_{ij} for $1 \le i, j \le N$, are also polynomials in the entries of M(z). Hence $M(z)^{-1}$ is analytic in $B_r(z_0) \setminus S_r$. From the vector β we obtain $(I - G(z))^{-1}\eta = \eta + \sum_{i=1}^N \beta_i \psi_i$. This operator is analytic in $B_r(z_0) \setminus S_r$ and its singularities are the points of S_r . Define the operator $K(z) := (I - G(z))^{-1} - I$.

$$K(z)\eta = \sum_{i=1}^{N} \beta_i \psi_i = \sum_{i=1}^{N} \left(\frac{1}{d(z)} \sum_{j=1}^{N} a_{ij}(z) \left\langle \xi_j(z), \eta \right\rangle \right) \psi_i.$$

It is clear that the image of K(z) is a supspace of the vector space spanned by ψ_1, \ldots, ψ_N . Hence K(z) has finite rank. Recall that d(z) is the determinant of M(z), and recall that d(z) is a non-trivial analytic function and that S_r is its zero set. In particular for $z_c \in S_r$, there exist an integer $n_c \geq 1$ and an analytic function $g: B_{r_c}(z_c) \to \mathbb{C}$ with $g(0) \neq 0$ such that

$$d(z) = (z - z_c)^{n_c} g(z), \text{ for } z \in B_{r_c}(z_c).$$

Hence the following limit

$$\lim_{z \to z_c} (z - z_c)^{n_c} (I - G(z))^{-1} = \lim_{z \to z_0} (z - z_c)^{n_0} K(z)$$

exists and is a non-zero operator. Also z_c is a pole for $(I - G(z))^{-1}$ which has order smaller than n_c . We conclude that $(I - G(z))^{-1}$ is meromorphic in $B_r(z_0)$. From equation (1) we conclude, that the same is true for L. Moreover it is clear that the above limit is of finite rank, and the limit $\lim_{z \to z_j} (z - z_j)^{a'_j} (I - L(z))^{-1}$ is then of finite rank as well, as the set of finite rank operators form an ideal.

To finish the proof we need to extend to U the above discussion. We have shown that for all $z_0 \in U$, there exists a ball $B_r(z_0) \subset U$ such that

- Either $(I L(z))^{-1}$ is meromorphic on $B_r(z_0)$,
- Or $(I L(z))^{-1}$ does not exist at all on $B_r(z_0)$.

The set of points satisfying the first proposition (resp. the second) is open by construction. Both are closed because if we consider a sequence $z_n \to z_0 \in U$ with, then z_0 is in one of these two sets, and the z_n 's are in the corresponding ball $B_r(z_0)$ for n large enough.

As U is connected, this implies that one of these two sets coincides with U and the other one is empty. \Box

Corollary 3 (the Fredholm alternative). If A is a compact operator on \mathcal{H} , then either $(I - A)^{-1}$ exists or $A\psi = \psi$ has a solution.

Proof. Define $L(z) : \mathbb{C} \to \mathcal{L}(\mathcal{H})$ by L(z) = zA. Then L(z) is an analytic operator-valued function such that L(z) is compact for each $z \in \mathbb{C}$. Hence the above theorem applies. In particular we get the statement of the Fredholm alternative at z = 1.

The following theorem by Riesz and Schauder may also be proved using the framework we have developed in this note.

Theorem 4 (Riesz-Schauder theorem). Let A be a compact operator on \mathcal{H} . Then $\sigma(A)$ is a discrete set with no limit points except perhaps zero. Moreover any non-zero $\lambda \in \sigma(A)$ is an eigenvalue of finite multiplicity.

Proof. Define $L(z) : \mathbb{C} \to \mathcal{L}(\mathcal{H})$ by L(z) = zA. Then L(z) is an analytic operator-valued function such that L(z) is compact for each $z \in \mathbb{C}$. The set $C := \{z \in \mathbb{C} : zA\psi = \psi \text{ has a solution } \psi \neq 0\}$ is discrete by the proof of theorem 2 since it does not contain z = 0. It is even so, that all points are isolated. Moreover if $1/\lambda$ is not in C then $(I - A/\lambda)$ is invertible, and then so is $(\lambda - A)$. To see this, note that

$$(\lambda-A)^{-1}=\frac{1}{\lambda}\left(I-\frac{1}{\lambda}A\right)^{-1}$$

Hence $\lambda \notin \sigma(A)$. By contraposition $\lambda \in \sigma(A)$ implies $1/\lambda \in C$. As C is discrete we conclude that $\sigma(A)$ is discrete as well. Further if $z \in \mathbb{C}$ was a non-zero limit point of $\sigma(A)$, then 1/z would be a limit of C. As all points in C are isolated, only z = 0 can be a limit point of $\sigma(A)$.

Suppose $\lambda \in \sigma(A)$ is an eigenvalue of A, and suppose for contradiction that the corresponding eigenspace where infinite dimensional. Let $\{\psi_i\}_{i=1}^{\infty}$ be the set of linearly independent eigenvectors, and let $S = \operatorname{span}\{\psi_i : i \geq 1\} \cap (H)_1$ be all vectors in the span of the eigenvectors of length less than or equal to one. Since A is compact and S is bounded the closure of the image of S under A is compact. But

$$\overline{A(S)} = \lambda \overline{S},$$

and \overline{S} is the closed unitball of the infinite dimensional Banach space $\overline{\text{span}\{\psi_i : i \ge 1\}}$. Hence every non-zero eigenvalue of A has finite multiplicity.

References

- [1] Michael Reed and Barry Simon. *Functinal analysis, Volume I.* Academic Press, New York, 1980.
- [2] Christian Berg. *Complex Analysis*. Department of Mathematical Sciences, University of Copenhagen, 2014.